
CE 273
Markov Decision Processes

Lecture 8

Value Iteration

Lecture 8 Value Iteration

2/37

Previously on Markov Decision Processes

The objective in the discounted cost MDP problem is

lim
N→∞

Ew

N−1∑
k=0

{
αkg(xk , uk ,wk)

}
Under most practical situations that we encounter, this limit exists and we
can also exchange the limit and expectation and write

Ew

∞∑
k=0

{
αkg(xk , uk ,wk)

}
Likewise, given a particular policy π = {µ0, µ1, . . .}, the value function
can be written as

Jπ(x0) = lim
N→∞

Ew

{ N−1∑
k=0

αkg(xk , µk(xk),wk)

}
We will make appropriate assumptions (such as bounded costs) that will

guarantee the existence of the above limit.

Lecture 8 Value Iteration

3/37

Previously on Markov Decision Processes

As before, if Π denotes the set of admissible policies, the optimal cost
function is given by

J∗(x0) = Jπ∗(x0) = min
π∈Π

Jπ(x0)

Note that when writing the value functions, we can drop k and think of
J as a function of x alone because no matter where we are, we have an
infinite number of stages over which our objective is computed.

For most problems, it turns out that the optimal policy is also stationary!
That is, π = {µ, µ, . . .}. So we can simply write Jµ(x) as the cost of the
policy instead of Jπ(x).

Thus, unlike the finite horizon case, we need not find an infinite number

of functions J∗k (xk) and µ∗k(xk) but just compute J∗(x) and µ∗(x).

Lecture 8 Value Iteration

4/37

Previously on Markov Decision Processes

The new DP algorithm is

J0(x) = 0 ∀ x ∈ X

Jk+1(x) = min
u∈U(x)

E
{
g(x , u,w) + αJk(f (x , u,w))

}
Time is now measured backward from some N which tends to ∞.

Time

𝑁𝑘𝑘 + 1

𝐽𝑘
𝐽𝑘+1

𝑥 𝑓(𝑥, 𝑢, 𝑤)

Thus, after N iterations, we would have found the optimal cost for the
N-stage discounted problem with terminal cost function αNJ.

If we stop the algorithm after k iterations, we would have found the optimal

cost for the k-stage discounted problem with terminal cost function αkJ.

Lecture 8 Value Iteration

5/37

Previously on Markov Decision Processes

Definition

Given a function J : X → R, define (TJ)(x) as

(TJ)(x) = min
u∈U(x)

E
{
g(x , u,w) + αJ(f (x , u,w))

}
Definition

Given a function J : X → R, define (TµJ)(x) as

(TµJ)(x) = E
{
g(x , µ(x),w) + αJ(f (x , µ(x),w))

}
We can also define composition mappings

(T 0J)(x) = J(x) ∀ x ∈ X

(T kJ)(x) = (T (T k−1J))(x) ∀ x ∈ X

(T kJ)(x) is equivalent to k iterations of the new DP algorithm and is hence the
optimal cost of the k-stage discounted problem with terminal costs αkJ.

Likewise, (T 0
µJ)(x) = J(x) and (T k

µJ)(x) = (Tµ(T k−1
µ J))(x) ∀ x ∈ X

Lecture 8 Value Iteration

6/37

Previously on Markov Decision Processes

We will mostly deal with countable state, control, and disturbance spaces.
In such cases, we can write the DP equations and the T operators in more
compact form.

Suppose the state space is X = {1, . . . , n}. The transitions no longer are
a function of k and hence we can write

pij(u) = P[xk+1 = j |xk = i , uk = u]∀ i , j ∈ X , u ∈ U(i)

The two T mappings take the form

(TJ)(i) = min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J(j)

}
∀ i ∈ X

(TµJ)(i) =

{
g(i , µ(i)) + α

n∑
j=1

pij(µ(i))J(j)

}
∀ i ∈ X

Note that it has been implicitly assumed that g does not depend on the

disturbance. How can we relax that?

Lecture 8 Value Iteration

7/37

Previously on Markov Decision Processes

One can also write vector forms of these equations.

J =

J(1)
...

J(n)

 TJ =

(TJ)(1)
...

(TJ)(n)

 TµJ =

(TµJ)(1)
...

(TµJ)(n)

For a given policy µ, we can also write the one-step transition probability matrix
as

Pµ =

p11(µ(1)) . . . p1n(µ(1))
...

. . .
...

pn1(µ(n)) . . . pnn(µ(n))

and the cost vector for a fixed policy µ as

gµ =

g(1, µ(1))
...

g(n, µ(n))

Thus, the T-mu operator in matrix form can be written as

TµJ = gµ + αPµJ

Lecture 8 Value Iteration

8/37

Lecture Outline

1 Analysis Review

2 Value Iteration

3 Variants of Value Iteration

Lecture 8 Value Iteration

9/37

Lecture Outline

Analysis Review

Lecture 8 Value Iteration

10/37

Analysis Review
Convergence of Sequences

Let X be a vector space. Define a norm, a real valued-function ‖ ·‖, which
satisfies the following conditions for all x ∈ X ,

1 ‖x‖ ≥ 0, and ‖x‖ = 0⇔ x = 0

2 ‖ax‖ = |a|‖x‖ for any scalar a

3 ‖x + y‖ ≤ ‖x‖+ ‖y‖

Definition (Cauchy Sequence)

Let X be a normed vector space. A sequence {xk} is said to be a Cauchy
sequence if for any ε > 0 ∃N such that ‖xm − xn‖ ≤ ε ∀m, n ≥ N.

In other words, for a Cauchy sequence, ‖xm − xn‖ → 0 as m, n→∞.

Definition (Complete Space)

The space X is said to be complete if every Cauchy sequences converges
to a point in X .

A complete normed vector space is also called a Banach space.
Lecture 8 Value Iteration

11/37

Analysis Review
Contraction Mappings

Example of Banach spaces include

I Rn with the Euclidean norm

I B(X), the set of all bounded functions J : X → R with the
sup-norm

‖J‖ = sup
x∈X
|J(x)|

The sup-norm is also called the `∞-norm and is also denoted using ‖ · ‖∞

Lecture 8 Value Iteration

12/37

Analysis Review
Contraction Mappings

Definition (Contraction Mapping)

A function F : X → X is said to be a contraction mapping if for some
ρ ∈ (0, 1),

‖Fx − Fy‖ ≤ ρ‖x − y‖ ∀ x , y ∈ X

𝑥

𝑦
𝐹𝑥

𝐹𝑦

The scalar ρ is called the modulus of contraction of F .Where are we going

with this? We will show that T and Tµ are contraction mappings.

Lecture 8 Value Iteration

13/37

Analysis Review
Fixed Points

Theorem (Banach Fixed Point Theorem)

Let B(X) be a Banach space and suppose that F : B(X)→ B(X), is a
contraction mapping with modulus of contraction ρ. Then there exists a unique
J∗ ∈ B(X) such that

1 limk→∞ F kJ = J∗ ∀ J ∈ B(X)

2 J∗ = FJ∗

3 ‖F kJ − J∗‖ ≤ ρk‖J − J∗‖ ∀ k

Proof.

Proof of (1): Pick an arbitrary J ∈ B(X). Consider the sequence {Jk}, where
J0 = J, J1 = FJ, J2 = F 2J, . . ., i.e., Jk+1 = F kJ. We will first show that {Jk} is
a Cauchy sequence.

‖Jk+1 − Jk‖ ≤ ρ‖Jk − Jk−1‖ ∀ k = 1, 2, . . .

Re-applying this inequality, we can write

‖Jk+1 − Jk‖ ≤ ρk‖J1 − J0‖ ∀ k = 1, 2, . . .

Lecture 8 Value Iteration

14/37

Analysis Review
Fixed Points

Proof.

For every m ≥ 1, using triangle inequality,

‖Jk+m − Jk‖ ≤
m∑
i=1

‖Jk+i − Jk+i−1‖

≤
m∑
i=1

ρk+i−1‖J1 − J0‖

≤
∞∑
i=1

ρk+i−1‖J1 − J0‖

=
ρk

1− ρ‖J1 − J0‖

Thus, {Jk} is a Cauchy sequence and must converge to some J∗ ∈ B(X) since
B(X) is complete. Hence, (1) is proved.

Lecture 8 Value Iteration

15/37

Analysis Review
Fixed Points

Proof.

Proof of (2): For all k ≥ 1,

0 ≤ ‖FJ∗ − J∗‖ ≤ ‖FJ∗ − Jk‖+ ‖Jk − J∗‖ (Triangle Inequality)

≤ ρ‖J∗ − Jk−1‖+ ‖Jk − J∗‖ (Contraction Mapping)

Taking limit as k → 0 and using the sandwich theorem, J∗ = FJ∗.

Suppose J∗ was not unique. Let another Ĵ be a fixed point that satisfies
Ĵ = F Ĵ. ‖J∗ − Ĵ‖ = ‖FJ∗ − F Ĵ‖ ≤ ρ‖J∗ − Ĵ‖, which implies J∗ = Ĵ.

Proof of (3): Rate of convergence

‖F kJ − J∗‖ = ‖F kJ − FJ∗‖ ≤ ρ‖F k−1J − J∗‖

Proceeding similarly,
‖F kJ − J∗‖ ≤ ρk‖J − J∗‖

�

Lecture 8 Value Iteration

16/37

Lecture Outline

Value Iteration

Lecture 8 Value Iteration

17/37

Value Iteration
Wish List

Recall that we hypothesized that the following is true for infinite horizon
MDPs:

1 J∗(i) = limk→∞(T kJ)(i)∀ i ∈ X for any bounded function J.

2 J∗ = TJ∗, i.e., J∗ is a fixed point of the mapping T .

3 If µ(i) attains the minimum in the RHS of the above equation, then
it is optimal.

These conditions naturally lead to an algorithm to compute the optimal
value functions.

Let us now formally prove these using the Banach fixed point theorem.

We’d also like to establish how far we are from the optimal solution and

optimal policy after a fixed number of iterations.

Lecture 8 Value Iteration

18/37

Value Iteration
Assumptions

We will make the following assumptions throughout infinite horizon models
unless otherwise stated.

I Stationary costs and dynamics

I Bounded costs, i.e., |g(i , u)| ≤ M ∀i ∈ X , u ∈ U(i)

I Countable state, control, and disturbance space

For computing the optimal value functions and policies, we further assume

that the state, control, and disturbance spaces are finite.

Lecture 8 Value Iteration

19/37

Value Iteration
Useful Lemmas

For any two functions J : X → R and J ′ : X → R we write

J ≤ J ′ if J(i) ≤ J ′(i) ∀ i ∈ X

Lemma (Monotonicity Lemma)

For any J : X → R and J ′ : X → R such that J ≤ J ′ and a stationary policy µ,

1 T kJ ≤ T kJ ′

2 T k
µJ ≤ T k

µJ
′

Proof (Sketch).

Recall that T kJ is the optimal value function of the k-stage problem with
terminal costs αkJ. Thus, if the terminal costs are αkJ ′ instead, using
induction, we can show that T kJ ≤ T kJ ′. �

As a consequence, note that if J ≤ TJ, then T kJ ≤ T k+1J, ∀ k ≥ 1.

Lecture 8 Value Iteration

20/37

Value Iteration
Useful Lemmas

Suppose e : X → R denotes the unit function that takes a value 1 for all i and
let r be a scalar.(

T (J + re)
)
(i) = min

u∈U(i)
E
{
g(i , u) + α

n∑
j=1

pij(u)(J + re)(j)

}

= min
u∈U(x)

E
{
g(i , u) + α

n∑
j=1

pij(u)J(j) + αr

}
=
(
TJ
)
(i) + αr

Similarly, we can show
(
Tµ(J + re)

)
(i) = (TµJ)(i) + αr . These results can be

extended using induction as

Lemma (Constant Shift Lemma)

For every k, and J : X → R and stationary policy µ

1
(
T k(J + re)

)
(i) =

(
T kJ)

)
(i) + αk r

2
(
T k
µ(J + re)

)
(i) =

(
T k
µJ)
)
(i) + αk r

Lecture 8 Value Iteration

21/37

Value Iteration
Convergence of DP Algorithm

Theorem (Banach Fixed Point Theorem)

Let B(X) be a Banach space and suppose that F : B(X)→ B(X), is a
contraction mapping with modulus of contraction ρ. Then there exists a unique
J∗ ∈ B(X) such that

1 limk→∞ F kJ = J∗ ∀ J ∈ B(X)

2 J∗ = FJ∗

3 ‖F kJ − J∗‖ ≤ ρk‖J − J∗‖ ∀ k

Let us now use the Banach Fixed Point Theorem. Suppose X is the state space
and F is replaced with T .

Let B(X) denote the set of all bounded functions J : X → R with the sup-norm,
which is a Banach space.

What else do we need to apply the above theorem?

Lecture 8 Value Iteration

22/37

Value Iteration
Convergence of DP Algorithm

Proposition

T : B(X)→ B(X) is a contraction mapping with ρ = α

Proof.

Let J, J ′ ∈ B(X) and r = ‖J − J ′‖ = supi∈X |J(i)− J ′(i)|. r <∞ since J, J ′

are bounded. Hence, we may write

J(i)− r ≤ J ′(i) ≤ J(i) + r ∀ i ∈ X

Using Monotonicity Lemma,

(T (J − re))(i) ≤ (TJ ′)(i) ≤ (T (J + re))(i)∀ i ∈ X

Using the Constant Shift Lemma,

(TJ)(i)− αr ≤ (TJ ′)(i) ≤ (TJ)(i) + αr ∀ i ∈ X

which implies

|(TJ)(i)− (TJ ′)(i)| ≤ αr ∀ i ∈ X

⇒‖TJ − TJ ′‖ ≤ α‖J − J ′‖

Thus, T is a contraction mapping. �
Lecture 8 Value Iteration

23/37

Value Iteration
Convergence of DP Algorithm

Hence, from the Banach Fixed Point Theorem, limk→∞ T kJ = J∗, where
J∗ is the fixed point of T . Are we done?

Technically, we’ve just shown that J∗ ∈ B(X) but haven’t formally proved
that it is the same J∗ which minimizes the objective (we have informally
interpreted this J∗ as the limit of T kJ using a finite horizon model)

J∗(x0) = min
µ

lim
N→∞

E
{ N−1∑

k=0

αkg(xk , µ(xk),wk)

}

We will skip this part, but establishing it is not very difficult.

Lecture 8 Value Iteration

24/37

Value Iteration
Summary of Results

Proposition

For any bounded function J : X → R,

J∗ = lim
k→∞

T kJ

Proposition (Bellman Equations)

The optimal value functions satisfy

J∗ = TJ∗

and J∗ is the unique solution of this equation.

Lecture 8 Value Iteration

25/37

Value Iteration
Summary of Results

In a similar fashion, we can show that Tµ is also a contraction mapping
and invoke the Banach fixed point theorem to derive the following results.

Proposition

For any bounded function J : X → R,

Jµ = lim
k→∞

T k
µJ

Proposition

The value functions associated with a stationary policy µ satisfy

Jµ = TµJµ

and Jµ is the unique solution of this equation.

Lecture 8 Value Iteration

26/37

Value Iteration
Summary of Results

Combining the results from the last two slides, we can also say something
about the optimal policies

Proposition

A stationary policy µ is optimal ⇔ it attains the minimum in the
Bellman equations, i.e.,

TJ∗ = TµJ
∗

The proof of this proposition is trivial.

Lecture 8 Value Iteration

27/37

Value Iteration
Algorithm

Value Iteration

Fix a tolerance level ε > 0
Select J0 ∈ B(X) and k ← 0
J1 ← TJ0

while ‖Jk+1 − Jk‖ > ε(1−α)
2α

do
k ← k + 1
Jk+1 ← TJk

end while

Select µε that satisfies TµεJk+1 = TJk+1

In other words, the policy constructed at termination can be written as

µε(i) ∈ arg min
u∈U(i)

E
{
g(i , u) + α

n∑
j=1

pij(u)Jk+1(j)

}

Lecture 8 Value Iteration

28/37

Value Iteration
Example

Perform five iterations of the VI algorithm for the following example with
two states 1 and 2. Assume that the discount factor is 0.9.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]

Lecture 8 Value Iteration

29/37

Value Iteration
Example

Table: Value Iteration Results

1 2
k u1 u2 Jk(1) u1 u2 Jk(2)

0 - - 0.000 - - 0.000
1 2.000 0.500 0.500 1.000 3.000 1.000
2 2.563 1.288 1.288 1.563 3.788 1.563
3 3.221 1.844 1.844 2.221 4.344 2.221
4 3.745 2.414 2.414 2.745 4.914 2.745
5 4.247 2.896 2.896 3.247 5.396 3.247

Lecture 8 Value Iteration

30/37

Value Iteration
ε-Optimal Policies

Proposition

µε is ε-optimal, i.e., ‖Jµε − J∗‖ ≤ ε

Proof.

Recall that Jµε is the value function that is a fixed point of Tµε , i.e.,
Jµε = TµεJµε . Also, by construction, TµεJk+1 = TJk+1.

‖Jµε − J∗‖ ≤ ‖Jµε − Jk+1‖+ ‖Jk+1 − J∗‖

Consider the first term ‖Jµε − Jk+1‖:

‖Jµε − Jk+1‖ ≤ ‖Jµε − TJk+1‖+ ‖TJk+1 − Jk+1‖
= ‖TµεJµε − TµεJk+1‖+ ‖TJk+1 − TJk‖
≤ α‖Jµε − Jk+1‖+ α‖Jk+1 − Jk‖

Thus, ‖Jµε − Jk+1‖ ≤ α
1−α‖Jk+1 − Jk‖. In a similar manner, we can show that,

the second term, ‖Jk+1 − J∗‖ ≤ α
1−α‖Jk+1 − Jk‖.

The termination criteria ⇒ ‖Jk+1 − Jk‖ ≤ ε(1−α)
2α

. Hence, ‖Jµε − J∗‖ ≤ ε. �

Lecture 8 Value Iteration

31/37

Lecture Outline

Variants of Value Iteration

Lecture 8 Value Iteration

32/37

Variants of Value Iteration
Error Bounds

Proposition (Error Bounds for VI)

For every J, state i , and k,

(T kJ)(i)+ck ≤ (T k+1J)(i)+ck+1 ≤ J∗(i) ≤ (T k+1J)(i)+ c̄k+1 ≤ (T kJ)(i)+ c̄k

where

ck =
α

1− α min
i=1,...,n

{
(T kJ)(i)− (T k−1J)(i)

}
c̄k =

α

1− α max
i=1,...,n

{
(T kJ)(i)− (T k−1J)(i)

}
Thus, at any iteration k, one can find an interval for each state within which the
optimal value must lie.

The regular VI algorithm can be terminated when the difference between c̄k and
ck becomes small and calculate a final estimate of the value functions using the
average of the bounds

Ĵk = T kJ +

(
c̄k + ck

2

)
e

Lecture 8 Value Iteration

33/37

Variants of Value Iteration
Gauss-Seidel Algorithm

In the VI algorithm, Jk+1 for each state is calculated from old Jk values. This is
similar to the Jacobi method for solving a system of equations.

The convergence rate can be improved by updating the J values using other J
values that were updated in the same iteration. The T operator can be replaced
with the F mapping defined below:

(FJ)(1) = min
u∈U(1)

{
g(1, u) + α

n∑
j=1

pij(u)J(j)

}

(FJ)(i) = min
u∈U(i)

{
g(i , u) +α

i−1∑
j=1

pij(u)(FJ)(i) +α
n∑
j=i

pij(u)J(j)

}
∀ i = 2, . . . , n

This method is also called Asynchronous Value Iteration.

Lecture 8 Value Iteration

34/37

Variants of Value Iteration
Example

Perform five iterations of the VI with error bounds and the Gauss-Seidel
algorithm for the following example with two states 1 and 2. Assume that
the discount factor is 0.9.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]

Lecture 8 Value Iteration

35/37

Variants of Value Iteration
Example

Table: Value Iteration with Error Bounds

1 2
k Jk(1) Jk(1) + ck Jk(1) + c̄k Jk(2) Jk(2) + ck Jk(2) + c̄k
0 0 - - 0 - -
1 0.500 5.000 9.500 1.000 5.500 10.000
2 1.288 6.350 8.375 1.563 6.625 8.650
3 1.844 6.856 7.767 2.221 7.232 8.144
4 2.414 7.129 7.540 2.745 7.460 7.870
5 2.896 7.287 7.417 3.247 7.583 7.768

Lecture 8 Value Iteration

36/37

Variants of Value Iteration
Example

Table: Gauss-Seidel Value Iteration

1 2
k u1 u2 Jk(1) u1 u2 Jk(2)

0 - - 0.000 - - 0.000
1 2.000 0.500 0.500 1.338 3.113 1.338
2 2.638 1.515 1.515 2.324 4.244 2.324
3 3.546 2.409 2.409 3.149 5.111 3.149
4 4.335 3.168 3.168 3.847 5.839 3.847
5 5.004 3.809 3.809 4.437 6.454 4.437

Lecture 8 Value Iteration

37/37

Your Moment of Zen

Lecture 8 Value Iteration

