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Previously on Markov Decision Processes

Costs are usually discounted for mathematical and practical reasons. Math-
ematically, they guarantee that the long-run discounted costs are bounded.

Practically, a cost of c units in one future time-step is equivalent to incur-
ring αc now, where 0 ≤ α < 1. More generally, cost c at time step n is
equivalent to αnc now.

One interpretation of α is that it reflects the interest rate. Another grim
way to look at is to assume that time is finite, and the future may not
happen with probability (1− α). Define the cost over the infinite horizon
as

C =
∞∑
n=0

αnc(Xn)

C is a random variable and hence let’s look at the expected total discounted
cost starting from state i ,

φ(i) = E
[
C |X0 = i

]
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Previously on Markov Decision Processes

The expected costs for the discounted case depends on the initial state.
The advantage however is that we don’t need any conditions on the DTMC
and the inverse exists as long as α < 1.

Interestingly, if we average the total expected cost without discounting,
the initial state does not matter!

Define the long-run expected cost per period (average cost),

g(i) = lim
N→∞

1

N + 1
E
{ N∑

n=0

c(Xn)|X0 = i

}
For the above limit to exist, assume that the DTMC is irreducible and

positive recurrent. Since πs represent the average time spent in state i ,

we would expect g(i) = g =
∑

j∈S πjc(j).
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Previously on Markov Decision Processes

When states are countable, we can simplify the notation. Suppose indices
i and j represent the states. Let

pij(u, k) = P
[
xk+1 = j |xk = i , uk = u

]
How is this different from the transition probabilities of DTMCs?

The DP algorithm can be written as

Jk(i) = min
uk∈Uk (i)

{
gk(i , uk) +

∑
j∈Sk+1

pij(uk , k)Jk+1(j)

}

where gk(i , uk) is expected cost of choosing uk in state i . If it depends

on the disturbance, one can treat it as gk(i , uk , j) and move it inside the

summation.
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Previously on Markov Decision Processes

Thus, the number of candidates to reject before selecting the candidate
with relative rank 1 is the smallest integer for which

1

N − 1
+

1

N − 2
+ . . .+

1

η + 1
≤ 1

What is the value of η for N = 5? What if N →∞? We can approximate
the above inequality as

1

N
+

1

N − 1
+

1

N − 2
+. . .+

1

η + 1
≈ 1

which can be written as∫ N

η

1

x
≈ 1⇒ ln(N/η) ≈ 1

⇒ η/N ≈ e−1 = 0.3679
𝑥

1/𝑥

𝜂 𝜂 + 1 𝑁𝑁 − 1

Thus, when N is large, it is optimal to reject 36.79% of the candidates

and then select the top relative-ranked one!

Lecture 7 Infinite Horizon Discounted MDPs



6/35

Lecture Outline

1 Finite Horizon MDPs Wrap-up

2 Introduction to Infinite Horizon Problems

3 Alternate Notation
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Lecture Outline

Finite Horizon MDPs Wrap-up
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Finite Horizon MDPs Wrap-up
Cost Functions

There appears to be some confusion with the notation especially with
regard to the cost functions. Recall that in MDPs

𝑥𝑘 𝑥𝑘+1

𝑢𝑘

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)

𝑢𝑘+1

Period 𝑘 Period 𝑘 + 1

𝑥𝑘+2

𝑢𝑘+2

𝑔𝑘+1(𝑥𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1)

Period 𝑘 + 2

𝑤𝑘 𝑤𝑘+1

the objective is E
{
gN(xN) +

N−1∑
k=0

gk(xk , uk ,wk)

}
and the value functions

for a given policy π are defined as

Jπ(x0) = E
{
gN(xN) +

N−1∑
k=0

gk(xk , µk(xk),wk)

}
The above notation is the most general form, but depending on the context

gk(xk , uk ,wk) need not depend on the disturbance (or even the control).
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Finite Horizon MDPs Wrap-up
Cost Functions

Consider the case where the cost function does not depend on wk , i.e.,
gk(xk , uk ,wk) = gk(xk , uk). Then the objective becomes

E
{
gN(xN) +

N−1∑
k=0

gk(xk , uk)

}

and the value functions for a given policy π are defined as

Jπ(x0) = E
{
gN(xN) +

N−1∑
k=0

gk(xk , µk(xk))

}

Why do we have an expectation when wk is absent in the above expres-
sions? Because xk+1’s still depend on wks and hence are random variables!
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Finite Horizon MDPs Wrap-up
Cost Functions

Let us revisit the disturbance and the cost/reward structure in the examples
we discussed so far:

Tetris: The disturbance was the shape of the next block. One-step rewards
correspond to the number of rows cleared and they do not depend on the
disturbance.

Inventory Control: Disturbance was the demand in period k and the

one-step cost was cuk +p max(0,−xk −uk +wk) +hmax(0, xk +uk −wk)

and it clearly depends on wk .
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Finite Horizon MDPs Wrap-up
Cost Functions

Secretary Problem: Disturbance was the relative rank of the next candi-
date (either top relative rank or not). Since the objective was to maximize
the probability of selecting the top true-ranked candidate, the rewards were
collected only at the end of the interview.

Had we interviewed everyone, in hindsight, we can assign a reward of 1 or
0 (the applet version). However, at the time of stopping, the probability
with which we’ve chosen the top true-ranked candidate is k/N and is
independent of wk .

Imagine simulating a stopping policy. We switch to the T state and hence
never know the ranks of the others.

Airline Revenue Management: The disturbance is the offer made by a
customer in the next time step. The one-step reward is the offer made by
the current customer if we agree to sell and is hence independent of wk .
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Finite Horizon MDPs Wrap-up
Cost Functions

One-step costs that do not depend on wk are possible in two situations:

I Costs are realized before we see the realization of wk and move to
the new state! The index k in wk must be carefully interpreted.

I They depend on wk but are averaged out in the problem
specification, i.e., gk(xk , uk) = Ewk

gk(xk , uk ,wk)

You’ll thus commonly see the Bellman equations in the following two for-
mats:

Jk(xk) = min
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
Jk(xk) = min

uk∈Uk (xk )
gk(xk , uk) + Ewk

{
Jk+1(fk(xk , uk ,wk))

}
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Finite Horizon MDPs Wrap-up
Structural Results

There are many more practical problems in which structural results can be
obtained. You’ll see a few more examples in your assignment.

One property commonly exhibited by the value functions and policies is
monotonicity. For e.g., the inventory control policy is monotone.

It is possible to derive some sufficient conditions for monotonicity of value
functions and policies. Let’s briefly discuss these results without delving
into the proofs.

We’ll use the second notation (Markov chain) as it is more ideal for this

discussion.
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Finite Horizon MDPs Wrap-up
Superadditive Functions

Definition (Superadditivity)

Consider a real-valued function f : X × Y → R. It is superadditive or
supermodular if it satisfies the quadrangle inequality

f (x1, y1) + f (x2, y2) ≥ f (x1, y2) + f (x2, y1)∀ x2 ≥ x1, y2 ≥ y1

Examples of superadditive functions
include xy , (x + y)2. Similar defini-
tions can be extended for the discrete
version of this definition.

It can also be shown that for twice
differentiable functions defined on
R2, superadditivity is satisfied when
∂2f /∂x∂y ≥ 0. 𝑥1 𝑥2

𝑦1

𝑦2
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Finite Horizon MDPs Wrap-up
Monotonicity of Optimal Value Functions

Let the state space be S = {0, 1, . . .} for all k. Recall that pij(uk , k) is the
probability of moving from state i to j when an action uk is taken at time k.
Define

qii′(uk , k) =
∞∑
j=i′

pij(uk , k)

which is the probability of transitioning from i to a state numbered ≥ i ′.

Proposition

Suppose that

1 qii′(uk , k) is nondecreasing in i for all i ′ ∈ S , uk ∈ Uk(i),
k ∈ {0, 1, . . . ,N − 1}

2 gk(i , uk) is nondecreasing in i for all uk ∈ Uk(i), k ∈ {0, 1, . . . ,N − 1}
3 gN(i) is nondecreasing in i

then the optimal value functions J∗k (i) are nondecreasing in i for all
k ∈ {0, 1, . . . ,N − 1}
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Finite Horizon MDPs Wrap-up
Monotonicity of Optimal Policies

Similar results exist for proving the monotonicity of the optimal policies.

Proposition

Suppose that

1 qii′(uk , k) is nondecreasing in i for all i ′ ∈ S , uk ∈ Uk(i),
k ∈ {0, 1, . . . ,N − 1}

2 gk(i , uk) is nondecreasing in i for all uk ∈ Uk(i), k ∈ {0, 1, . . . ,N − 1}
3 gN(i) is nondecreasing in i

4 qii′(uk , k) is superadditive on S × Uk(i), k ∈ {0, 1, . . . ,N − 1}
5 gk(i , uk) is superadditive on S × Uk(i), k ∈ {0, 1, . . . ,N − 1}

then the optimal policy µ∗k (i) is nondecreasing in i for all k ∈ {0, 1, . . . ,N − 1}

One can replace nondecreasing with nonincreasing and superadditivity with sub-

additivity to claim that the value functions and policies are nonincreasing.
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Finite Horizon MDPs Wrap-up
Monotone DP Algorithm

How does this help? Notice that the Bellman equations require us to
minimize a function over Uk(i)

Jk(i) = min
uk∈Uk (i)

{
gk(i , uk) +

∑
j∈Sk+1

pij(uk , k)Jk+1(j)

}

This has to be carried out for every i ∈ S . Thus, if we know the optimal
policy for some state i , µ∗k(i), we can shrink the search space for higher
states.

That is, for i + 1, the minimization is carried out over uk ∈ Uk(i + 1) and
uk ≥ µ∗(i).
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Finite Horizon MDPs Wrap-up
Deterministic vs. Randomized Policies

At any stage k , we have so far chosen a single control depending on the
state. However, one can also randomize over the set of available actions.

There are results with mild requirements (such as bounded costs) which
guarantee the existence of deterministic policies.

All the examples we’ve discussed in the last few lectures can be shown to

satisfy the conditions required for these results.
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Lecture Outline

Introduction to Infinite Horizon MDPs
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Introduction to Infinite Horizon MDPs
Motivation

In most practical sequential decision making problems, the time horizon is
finite. However, it is worthwhile to look at cases where N →∞ if

I We are optimizing a system that doesn’t have a terminal stage. For
e.g., maintenance of roads, water resource management, or training
a robot.

I We could also be looking at systems where several a finite, but
exponential number of stages are involved (e.g., Go)

I Alternately, we might be dealing with optimal stopping problems
where N can theoretically be infinite (e.g., Stochastic shortest paths
with cycles)

A common feature in infinite horizon models is stationarity. The transition
dynamics and one-step costs/rewards, and distribution of disturbances do
not depend on time.

This is very similar to the time-homogeneity assumption in Markov chains.
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Introduction to Infinite Horizon MDPs
Types

In this course, we will study three variants of the problem:

I Discounted Cost Problems

I Undiscounted/Total Cost Problems

I Average Cost Problems

In discounted cost problems the discount factor α < 1. This makes it
mathematically elegant and relatively easy to solve.

The total cost model is similar in objective but α = 1. Due to this
assumption, the objective function can be unbounded. Hence, we’ll study
a special case in which there is a zero cost termination state. (Recall
recurrent DTMCs.)

The average cost model is analogous to the one we saw in DTMCs and

is useful when the total cost is unbounded and when discounting doesn’t

make sense.
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Introduction to Infinite Horizon MDPs
Discounted Problems

As before, at stage k let xk , uk , and wk be the state, control, and disturbance.
Suppose g(xk , uk ,wk) and f (xk , uk ,wk) represent the one-step costs and the
system dynamics.

The objective in the discounted cost MDP problem is

lim
N→∞

Ew

N−1∑
k=0

{
αkg(xk , uk ,wk)

}
Under most practical situations that we encounter, this limit exists and we can
also exchange the limit and expectation and write

Ew

∞∑
k=0

{
αkg(xk , uk ,wk)

}
Likewise, given a particular policy π = {µ0, µ1, . . .}, the value function can be
written as

Jπ(x0) = lim
N→∞

Ew

{ N−1∑
k=0

αkg(xk , µk(xk),wk)

}
We will make appropriate assumptions (such as bounded costs) that will guar-

antee the existence of the above limit.
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Introduction to Infinite Horizon MDPs
Stationarity

As before, if Π denotes the set of admissible policies, the optimal cost
function is given by

J∗(x0) = Jπ∗(x0) = min
π∈Π

Jπ(x0)

Note that when writing the value functions, we can drop k and think of
J as a function of x alone because no matter where we are, we have an
infinite number of stages over which our objective is computed.

For most problems, it turns out that the optimal policy is also stationary!
That is, π = {µ, µ, . . .}. So we can simply write Jµ(x) as the cost of the
policy instead of Jπ(x).

Thus, unlike the finite horizon case, we need not find an infinite number

of functions J∗k (xk) and µ∗k(xk) but just compute J∗(x) and µ∗(x).

Lecture 7 Infinite Horizon Discounted MDPs



24/35

Introduction to Infinite Horizon MDPs
A New DP Algorithm

Earlier, we used the DP algorithm to find the optimal values and policies.
But now, we have a problem! There is no terminal state.

We’ll still try to do something similar and develop a recursive set of equa-
tions which look like

J0(x) = 0 ∀ x ∈ X

Jk+1(x) = min
u∈U(x)

E
{
g(x , u,w) + αJk(f (x , u,w))

}
The key idea will be to solve this recursively and after a large number of
iterations, we’ll get the optimal value functions. (In fact, we’ll show that
the initial conditions don’t matter!)

Note that we’ve completely dropped subscripts for several terms since un-
like the objective, which has an infinite summation, we are just dealing
with one transition.

What is odd about the above algorithm? How is it different from the finite

horizon version?
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Introduction to Infinite Horizon MDPs
A New DP Algorithm

The new DP recursive equations have k and k + 1 switched and they seem
to imply that it is forward recursive. But it is not. The subscripts have a
different meaning.

Consider a N-stage sub-problem of the infinite horizon case. We’ll assume
that the terminal cost is αNJ(xN) since it has to be discounted at the start
of the process, where J(x) is some known function. The objective of this
finite horizon model is

Ew

{
αNJ(xN) +

N−1∑
k=0

αkg(xk , uk ,wk)

}
and the Bellman equations can be written as

ĴN(x) = αNJ(x)

Ĵk(x) = min
u∈U(x)

Ew

{
αkg(x , u,w) + Ĵk+1(f (x , u,w))

}
∀ k = N − 1, . . . , 1, 0
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Introduction to Infinite Horizon MDPs
A New DP Algorithm

Substitute N − k for k in the second equation.

ĴN−k(x) = min
u∈U(x)

Ew

{
αN−kg(x , u,w) + ĴN−k+1(f (x , u,w))

}
Divide both sides by αN−k and set

Jk(x) =
ĴN−k(x)

αN−k

The new Bellman equations thus become,

J0(x) = J(x)∀ x ∈ X

Jk+1(x) = min
u∈U(x)

E
{
g(x , u,w) + αJk(f (x , u,w))

}
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Introduction to Infinite Horizon MDPs
A New DP Algorithm

Time is now measured backward from some N which tends to ∞.

Time

𝑁𝑘𝑘 + 1

𝐽𝑘
𝐽𝑘+1

𝑥 𝑓(𝑥, 𝑢, 𝑤)

Thus, after N iterations, we would have found the optimal cost for the
N-stage discounted problem with terminal cost function αNJ.

If we stop the algorithm after k iterations, we would have found the optimal
cost for the k-stage discounted problem with terminal cost function αkJ.

Life can only be understood backwards; but it must be lived forwards –

Søren Kierkegaard
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Introduction to Infinite Horizon MDPs
T Operator

We will define a couple of mappings that allow a compact representation
of the algorithms and proofs for infinite horizon problems.

Definition

Given a function J : X → R, define (TJ)(x) as

(TJ)(x) = min
u∈U(x)

E
{
g(x , u,w) + αJ(f (x , u,w))

}

𝑇A function J A new function

This mapping is equivalent to one iteration of the new DP algorithm.
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Introduction to Infinite Horizon MDPs
T Operator

We will also define an analogous operator for a given policy without mini-
mization

Definition

Given a function J : X → R, define (TµJ)(x) as

(TµJ)(x) = E
{
g(x , µ(x),w) + αJ(f (x , µ(x),w))

}
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Introduction to Infinite Horizon MDPs
T Operator

We can also define composition mappings

(T 0J)(x) = J(x)∀ x ∈ X

(T kJ)(x) = (T (T k−1J))(x)∀ x ∈ X

How can we interpret (T kJ)(x)? It is equivalent to k iterations of the
new DP algorithm and is hence the optimal cost of the k-stage discounted
problem with terminal costs αkJ.

Likewise,

(T 0
µJ)(x) = J(x)∀ x ∈ X

(T k
µJ)(x) = (Tµ(T k−1

µ J))(x)∀ x ∈ X

(T k
µJ)(x) is the cost of stationary policy µ for the k-stage discounted

problem with terminal costs αkJ.
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Lecture Outline

Alternate Notation
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Alternate Notation
Countable State Spaces

We will mostly deal with countable state, control, and disturbance spaces.
In such cases, we can write the DP equations and the T operators in more
compact form.

Suppose the state space is X = {1, . . . , n}. The transitions no longer are
a function of k and hence we can write

pij(u) = P[xk+1 = j |xk = i , uk = u]∀ i , j ∈ X , u ∈ U(i)

The two T mappings take the form

(TJ)(i) = min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J(j)

}
∀ i ∈ X

(TµJ)(i) =

{
g(i , µ(i)) + α

n∑
j=1

pij(µ(i))J(j)

}
∀ i ∈ X

Note that it has been implicitly assumed that g does not depend on the

disturbance. How can we relax that?
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Alternate Notation
Countable State Spaces

One can also write vector forms of these equations.

J =

J(1)
...

J(n)

 TJ =

(TJ)(1)
...

(TJ)(n)

 TµJ =

(TµJ)(1)
...

(TµJ)(n)


For a given policy µ, we can also write the one-step transition probability matrix
as

Pµ =

p11(µ(1)) . . . p1n(µ(1))
...

. . .
...

pn1(µ(n)) . . . pnn(µ(n))


and the cost vector for a fixed policy µ as

gµ =

g(1, µ(1))
...

g(n, µ(n))


Thus, the T-mu operator in matrix form can be written as

TµJ = gµ + αPµJ
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Alternate Notation
Road Map

With these definitions, we would like to prove the following wish list:

1 J∗(x) = limk→∞(T kJ)(x)∀ x ∈ X for any bounded function J.

2 J∗ = TJ∗, i.e., J∗ is a fixed point of the mapping T .

3 If µ(x) attains the minimum in the RHS of the above equation,
then it is optimal.
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Your Moment of Zen
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