
CE 273
Markov Decision Processes

Lecture 4

Finite Horizon MDPs

Lecture 4 Finite Horizon MDPs



2/44

Previously on Markov Decision Processes

Consider a Tesla manufacturing plant which produces one car each day. Demand
for cars, however, can occur in batches. Let {Yn, n ≥ 1} be the sequence of iid
demands on different days with a pmf

αk = P
[
Yn = k

]
, k ∈ Z+

Let Xn represent the number of cars in the warehouse after the demand for a
particular day is met. Assuming no back orders and that the production occurs
before sales,

Suppose Xn = i . Then for 0 < j ≤ i + 1, P
[
Xn+1 = j |Xn = i ,Xn−1, . . . ,X0

]
= P

[
max{Xn + 1− Yn+1, 0} = j |Xn = i ,Xn−1, . . . ,X0

]
= P

[
Xn + 1− Yn+1 = j |Xn = i ,Xn−1, . . . ,X0

]
= αi−j+1

If j = 0, P
[
Xn+1 = 0|Xn = i ,Xn−1, . . . ,X0

]
= P

[
max{Xn + 1− Yn+1, 0} = 0|Xn = i ,Xn−1, . . . ,X0

]
= P

[
Yn+1 ≥ i + 1|Xn = i ,Xn−1, . . . ,X0

]
=

∞∑
k=i+1

αk = βi

Lecture 4 Finite Horizon MDPs



3/44

Previously on Markov Decision Processes

Reducible Irreducible

DTMC

Null RecurrentPositive Recurrent

Transient Recurrent

Aperiodic Periodic

Case V

Case I

Case II

Case III Case IV

Lecture 4 Finite Horizon MDPs



4/44

Previously on Markov Decision Processes

Theorem (Case I)

Let {Xn, n ≥ 0} be an transient, irreducible DTMC. Then

lim
n→∞

p
(n)
ij = 0∀ i , j ∈ S

Theorem (Case II)

Let {Xn, n ≥ 0} be an null recurrent, irreducible DTMC. Then

lim
n→∞

p
(n)
ij = 0∀ i , j ∈ S

Lecture 4 Finite Horizon MDPs



5/44

Previously on Markov Decision Processes

Theorem (Case III)

Let e be a column vector of ones. For an aperiodic, positive recurrent,
irreducible DTMC, there exists unique πj > 0, j ∈ S such that

lim
n→∞

p
(n)
ij = πj , ∀ i , j ∈ S

πP = π (Balance Equation)

πe = 1 (Normalizing Equation)

Theorem (Case IV)

Let e be a column vector of ones. For a periodic, positive recurrent,
irreducible DTMC, there exists unique πj > 0, j ∈ S such that

lim
n→∞

m
(n)
ij

n + 1
= πj , ∀ i , j ∈ S

πP = π

πe = 1

Lecture 4 Finite Horizon MDPs



6/44

Previously on Markov Decision Processes

Theorem (Case V)

Let i ∈ C and j ∈ Cr .

1 If Cr is transient or null recurrent d
(n)
ij → 0

2 If Cr is aperiodic and positive recurrent, d
(n)
ij → ui (r)πj , where πjs

are derived from limiting distribution of P(r)(n)

3 If Cr is periodic and positive recurrent, d
(n)
ij does not have a limit.

However
∑n

m=0 d
(m)
ij /(n + 1)→ ui (r)πj , where πjs are derived from

limiting distribution of P(r)(n)

Lecture 4 Finite Horizon MDPs



7/44

Previously on Markov Decision Processes

From the examples, we can see that

I lim
n→∞

P(n) doesn’t always exist

I lim
n→∞

M(n)

n + 1
however always exists and equals lim

n→∞
P(n) when the later

exists. (Why is this intuitively true?)

Case lim
n→∞

P(n) lim
n→∞

M(n)

n + 1
Identical Rows Row Sum = 1

I X X X X
II X X X X
III X X X X
IV X X X X
V X X X X

Lecture 4 Finite Horizon MDPs



8/44

Lecture Outline

1 DTMCs with Costs and Rewards

2 Deterministic Problems

3 Finite Horizon Models

4 Dynamic Programming

Lecture 4 Finite Horizon MDPs



9/44

Lecture Outline

DTMCs with Costs and Rewards

Lecture 4 Finite Horizon MDPs



10/44

DTMCs with Costs and Rewards
Introduction

So far, state transitions in the DTMC did not involve any costs or rewards.
We can model these and study the long-run

I Discounted costs

I Average costs

Rewards can be thought of negative costs for optimization. Assume that
every time the DTMC visits state i , an expected cost of c(i) (< ∞) is
incurred.

One can also extend this analysis to cases where costs are a function of
the future state, i.e., c(i , j).

We typically do not evaluate total cost because it can be unbounded. We

will revisit these ideas in greater detail in the context of MDPs.

Lecture 4 Finite Horizon MDPs



11/44

DTMCs with Costs and Rewards
Discounted Costs

Costs are usually discounted for mathematical and practical reasons. Mathemat-
ically, they guarantee that the long-run discounted costs are bounded.

Practically, a cost of c units in one future time-step is equivalent to incurring
αc now, where 0 ≤ α < 1. More generally, cost c at time step n is equivalent
to αnc now.

One interpretation of α is that it reflects the interest rate. Another grim way
to look at is to assume that time is finite, and the future may not happen with
probability (1− α). Define the cost over the infinite horizon as

C =
∞∑
n=0

αnc(Xn)

C is a random variable and hence let’s look at the expected total discounted
cost starting from state i ,

φ(i) = E
[
C |X0 = i

]
Lecture 4 Finite Horizon MDPs



12/44

DTMCs with Costs and Rewards
Discounted Costs

Theorem

Suppose c and φ represent column vectors of c(i)s and φ(i)s. For 0 ≤ α < 1,

φ = (I − αP)−1c

Proof.

Define C1 =
∑∞

n=1 α
nc(Xn). Since the DTMC is time-homogeneous,

E
[
C1|X1 = j

]
= αφ(j)∀ j ∈ S

∴ E
[
C1|X0 = i

]
=
∑
j∈S

pijE
[
C1|X1 = j ,X0 = i

]
=
∑
j∈S

pijαφ(j)

From the definition of φ,

φ(i) = E
[
C |X0 = i

]
= E

[
c(X0) + C1|X0 = i

]
= c(i) + α

∑
j∈S

pijφ(j)

which in matrix form can be written as φ = c + αPφ. �

Lecture 4 Finite Horizon MDPs



13/44

DTMCs with Costs and Rewards
Example

Consider the PageRank example. Suppose each website can potentially bring
Google [1 2 5 3]T dollars of ad revenue.

C =

1 2 3 4


1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 0 0 0 0

P =

1 2 3 4


1 0 1/2 0 1/2
2 1/3 0 1/3 1/3
3 1 0 0 0
4 1/4 1/4 1/4 1/4

For α = 0.9, What is the expected total discounted revenue?

c =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 0.9


0 1/2 0 1/2

1/3 0 1/3 1/3
1 0 0 0

1/4 1/4 1/4 1/4



−1 

1
2
5
3

 =


23.37
24.41
26.03
25.30



Lecture 4 Finite Horizon MDPs



14/44

DTMCs with Costs and Rewards
Average Costs

The expected costs for the discounted case depends on the initial state.
The advantage however is that we don’t need any conditions on the DTMC
and the inverse exists as long as α < 1.

Interestingly, if we average the total expected cost without discounting,
the initial state does not matter!

Define the long-run expected cost per period (average cost),

g(i) = lim
N→∞

1

N + 1
E
{ N∑

n=0

c(Xn)|X0 = i

}

For the above limit to exist, assume that the DTMC is irreducible and

positive recurrent. Since πs represent the average time spent in state i ,

we would expect g(i) = g =
∑

j∈S πjc(j).

Lecture 4 Finite Horizon MDPs



15/44

DTMCs with Costs and Rewards
Average Costs

Theorem

Consider an positive recurrent, irreducible DTMC with limiting occupancy
distribution {πj , j ∈ S}. Then g(i) = g =

∑
j∈S πjc(j)

Proof.

g(i) = lim
n→∞

1

N + 1

∑
j∈S

m
(n)
ij c(j)

=
∑
j∈S

lim
n→∞

m
(n)
ij

n + 1
c(j)

=
∑
j∈S

πjc(j)

�

Exchange of limit and summation is allowed because of the bounded convergence

theorem.

Lecture 4 Finite Horizon MDPs



16/44

DTMCs with Costs and Rewards
Example

Consider the PageRank example. Using the limiting occupancy distribution
calculated in Lecture 3, the average revenue per click is

[
0.3077 0.2308 0.1538 0.3077

] 
1
2
5
3

 = 2.4614

Lecture 4 Finite Horizon MDPs



17/44

DTMCs with Costs and Rewards
MDPs Revisited

Let’s transition into MDPs in
which the decision maker can take
an action/control which takes the
system to another state and the
process is repeated.

Current State New State

Action/Control

Cost/Rewards

Action/Control

Period 𝑡 Period 𝑡 + 1

…

The end goal is to optimize some function of the sequence of cost/reward
(which depends on the current state and action).

Before choosing the action, one cannot predict the future state with cer-
tainty. State transitions are usually stochastic and are a function of the
actions.

Let us first look at models in which the time horizon is finite.

Lecture 4 Finite Horizon MDPs



18/44

Lecture Outline

Deterministic Problems

Lecture 4 Finite Horizon MDPs



19/44

Deterministic Problems
Introduction

Before looking at the stochastic case, it is helpful to look at sequential
decision making in deterministic settings since the key ideas can be directly
translated.

In deterministic problems, one can predict with certainty the effect of taking
an action in a particular state.

Let’s look at this using two examples:

I Scheduling problem

I Shortest paths

Lecture 4 Finite Horizon MDPs



20/44

Deterministic Problems
Scheduling Problem

Consider the problem of sequencing operations to produce an item. Sup-
pose producing a product requires four tasks: A, B, C, and D.

Assume that B can be performed only after A and D can be performed
only after C.

Assume that start-up costs sA = 5 and sC = 3. Let cij be the cost of
performing i followed by j .

Lecture 4 Finite Horizon MDPs



21/44

Deterministic Problems
Scheduling Problem

𝐴

C

Start

𝐶

B

𝐷

A

𝐵

𝐷

𝐶

𝐴

𝐵

D

5

3

3

2

2

6

4

4

6

3

3

4

1

3

6

2

1

3

Lecture 4 Finite Horizon MDPs



22/44

Deterministic Problems
Scheduling Problem

𝐴

C

Start

𝐶

B

𝐷

A

𝐵

𝐷

𝐶

𝐴

𝐵

D

5

3

3

2

2

6

4

4

6

3

3

4

1

3

6

2

1

3

5

9

5

3

8

7

10

Lecture 4 Finite Horizon MDPs



23/44

Deterministic Problems
Scheduling Problem

The idea behind the solution technique was simple. Starting from the last
step i = N − 1,

I Solve the tail subproblem from i to N and find the optimal action

I i ← i − 1 and repeat. The optimal actions from next time period
are the same as those computed previously.

Lecture 4 Finite Horizon MDPs



24/44

Deterministic Problems
Shortest Paths

Let’s look at another example which can be solved using a similar principle.

Find the shortest path in the following graph:

1

2

3

4

5

6

7

5

3

2

6

4

2

1

3

51

7

Lecture 4 Finite Horizon MDPs



25/44

Deterministic Problems
Shortest Paths

Reconstruct the graph in the following way:

1

5

4

7 7

4

7

3

2

6

6

45

6

76

2

3

4

3

6

5

0

0

0

4
1

7

3

6

2

1

5

3

4

We can now use the same approach over the 6 stages.

Lecture 4 Finite Horizon MDPs



26/44

Deterministic Problems
Shortest Paths

1

5

4

7 7

4

7

3

2

6

6

45

6

76

2

3

4

3

6

5

0

0

0

4
1

7

3

6

2

1

5

3

4
0

0

4

0

4

0

2

9

10

4

10

4

9

10

9

Can you generalize this procedure? For a graph containing N nodes, create

N − 1 stages and assume a self-loop with 0 cost at the destination.
Lecture 4 Finite Horizon MDPs



27/44

Lecture Outline

Finite Horizon Models

Lecture 4 Finite Horizon MDPs



28/44

Finite Horizon MDPs
Introduction

For general MDPs, the result of actions is not known with certainty. Two types
of notation are common:

The first, is more popular in the control theory community. The second one is
ideal when the state space is countable and is similar to the notation used to
study DTMCs.

Let’s look at the first one. Suppose there are N time steps k = 0, 1, 2, . . . ,N−1.
For each k, define

Notation Description

xk State of the system at time k
uk Action/control/decision variable to be chosen at k
wk Disturbance, a random variable with known distribution
fk(xk , uk ,wk) System dynamics

The distribution of wk may depend on xk and uk and is usually independent

across time. We will sometimes use lower-case notation for denoting the random

variables and not their realizations.

Lecture 4 Finite Horizon MDPs



29/44

Finite Horizon MDPs
Introduction

Additionally, we incur a one-step cost of gk(xk , uk ,wk) due to taking an action
in a particular state. We also assume that the final state xN results in a terminal
cost of gN(xN). One can maximize rewards by representing them as negative
costs.

The total cost is

gN(xN)+
N−1∑
k=0

gk(xk , uk ,wk) 𝑥𝑘 𝑥𝑘+1

𝑢𝑘

𝑔𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)

𝑢𝑘+1

Period 𝑘 Period 𝑘 + 1

𝑥𝑘+2

𝑢𝑘+2

𝑔𝑘+1(𝑥𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1)

Period 𝑘 + 2

𝑤𝑘 𝑤𝑘+1

The above cost is a random variable because w0, . . . ,wN−1 are random variables.
Hence, we are typically interested in minimizing the expected total cost

E

{
gN(xN) +

N−1∑
k=0

gk(xk , uk ,wk)

}

where the expectation is taken with respect to the joint distribution of w0, . . . ,wN−1.

Let w be the vector of disturbances.

Lecture 4 Finite Horizon MDPs



30/44

Finite Horizon MDPs
Introduction

Since u0, u1, . . . , uN−1 are the decision variables, one can write the opti-
mization problem as

min
u0,...,uN−1

Ew

{
gN(xN) +

N−1∑
k=0

gk(xk , uk ,wk)

}

This method of optimization assumes that all the decision variables are
calculated at k = 0 and is also called open-loop minimization.

For example, in the context of shortest paths, if the arc travel times were
stochastic, this is an example of a priori shortest path, where one chooses
the entire path at the start of the trip.

However, the knowledge of the state at different stages can be used to

make better decisions. Say you get information that a route is congested

midway.

Lecture 4 Finite Horizon MDPs



31/44

Finite Horizon MDPs
Introduction

Alternately, instead of just searching for the optimal u0, u1, . . . , uN−1, we
try to find a sequence of functions µ0, µk , . . . , µN−1, where µk(xk) is the
optimal decision to be taken at step k .

When we see the state xk in stage k , we use the above functions to take
an action uk = µk(xk). The sequence of functions is called a policy, and
it is a complete contingent plan of action.

We denote policies using π = {µ0, µ1, . . . , µN−1}. This style of optimiza-
tion is also called closed-loop optimization.

In other words, our decision variables are not real numbers (or vectors of
reals) but functions!

Lecture 4 Finite Horizon MDPs



32/44

Finite Horizon MDPs
Introduction

𝑇𝑖𝑚𝑒

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙
(𝑢
)

Figure: Open-loop Policy

𝑆𝑡𝑎𝑡𝑒 (𝑥0)

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙(
𝑢
1
)

𝑆𝑡𝑎𝑡𝑒 (𝑥1)

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙(
𝑢
2
)

𝑆𝑡𝑎𝑡𝑒 (𝑥𝑁)

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙(
𝑢
𝑁
)

…

Figure: Closed-loop Polciy

Lecture 4 Finite Horizon MDPs



33/44

Finite Horizon MDPs
Introduction

We denote the set of all states at time k using Sk . The actions at k can depend
on the time step and the state (think of chess).

Let Uk(xk) be the set of actions available at time step k and at state xk . We say
that a policy π is admissible if µk(xk) ∈ Uk(xk)∀ xk ∈ Sk , k ∈ {0, 1, . . . ,N−1}.
In other words, µk(xk) : Sk → Uk(xk). Let Π be the set of all admissible policies.

Think of π as the decision variable and Π as the feasible region. The objective
for a given π is

Jπ(x0) = E

{
gN(xN) +

N−1∑
k=0

gk(xk , µk(xk),wk)

}
where expected is taken over w and states evolve according to xk+1 = fk(xk , uk ,wk).
The goal is to find π∗ that minimizes the above cost.

J∗(x0) = Jπ∗(x0) = min
π∈Π

Jπ(x0)

J∗(x0) and is called the optimal value or cost function. Note that it is a

function of the initial state just like DTMC with costs.

Lecture 4 Finite Horizon MDPs



34/44

Finite Horizon MDPs
Example

Consider a variant of the inventory example we saw earlier. Assume that

Notation Description

xk No. of cars at the beginning of period k
uk Cars ordered at the begining of period k (delivered instantaneously)
wk Demand for cars during kth period with known distribution

𝑘 𝑘 + 1

𝑥𝑘

𝑢𝑘 𝑤𝑘

𝑥𝑘+1

Assume that back orders are allowed. The state transitions can be expressed as

xk+1 = fk(xk , uk ,wk) = xk + uk − wk

Suppose the one-step cost gk(xk , uk ,wk) is r(xk) + cuk . It is not necessary that
g depends on all three arguments.

The first term is the penalty for holding or falling short and the second term is

the cost of ordering uk units. Additionally, let R(xN) denote the terminal cost.

Lecture 4 Finite Horizon MDPs



35/44

Finite Horizon MDPs
Example

An admissible ‘parameterized’ policy could be to reorder as soon the stock falls
below Sk to bring it to Sk .

µk(xk) =

{
Sk − xk if xk < Sk

0 otherwise

𝑆𝑡𝑎𝑡𝑒 (𝑥0)

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙(
𝑢
1
)

𝑆𝑡𝑎𝑡𝑒 (𝑥1)

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙(
𝑢
2
)

…𝑆0

𝑆0

𝑆1

𝑆1

𝑆𝑡𝑎𝑡𝑒 (𝑥𝑁)

𝐶
𝑜
𝑛
𝑡𝑟
𝑜
𝑙(
𝑢
𝑁
)

𝑆𝑁

𝑆𝑁

The goal is to find a policy π that optimizes

Jπ(x0) = E

{
R(xN) +

N−1∑
k=0

(
r(xk) + cµk(xk)

)}

The state could be a continuous variable if we are dealing with other kinds of
commodities (say petrol).

Lecture 4 Finite Horizon MDPs



36/44

Finite Horizon MDPs
Note on Notation

Different communities (OR, Economics, CS, and EE) use different notation
for describing an MDP.

You’ll sometimes find s and a used for state and actions and V for value

functions in other texts and papers.

Lecture 4 Finite Horizon MDPs



37/44

Lecture Outline

Dynamic Programming

Lecture 4 Finite Horizon MDPs



38/44

Dynamic Programming
Optimality Conditions

We can extend the ideas from deterministic settings to general finite hori-
zon MDPs.

Proposition (Principle of Optimality)

Let π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} be an optimal policy. Consider the
subproblem in which we are at xi and seek the minimum cost-to-go from
i to N.

E

{
gN(xN) +

N−1∑
k=i

gk(xk , µk(xk),wk)

}
The truncated policy {µ∗i , µ∗i+1, . . . , µ

∗
N−1} is optimal for this subproblem.

The proof is straightforward. If the truncated policy was not optimal, we

can swap it with the optimal one and improve π∗. But this contradicts the

assumption that π∗ is optimal.

Lecture 4 Finite Horizon MDPs



39/44

Dynamic Programming
Algorithm

Theorem (DP Algorithm)

The optimal cost J∗(x0) equals J0(x0) which solves the following system of
equations

JN(xN) = gN(xN)∀ xN ∈ SN

Jk(xk) = min
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Jk+1(fk(xk , uk ,wk))

}
∀ xk ∈ Sk k = N − 1, . . . , 1, 0

Further, if u∗k = µ∗k (xk) minimizes the RHS of the above expression then
π∗ = {µ∗0 , µ∗1 , . . . , µ∗N−1} is optimal.

According to the theorem, at a given state xk , select an action that minimizes
the one-stage cost and the cost-to-go from the next step at the new state xk+1.

From the previous proposition, we know that Jk+1 is optimal if we were to consider

the problem from k + 1 to N. A formal proof can be easily established using

backward induction.

Lecture 4 Finite Horizon MDPs



40/44

Dynamic Programming
Complexity

The DP algorithm is more efficient than a brute force computation for
finite state spaces. To see why, assume that there are n states and m
actions in each state at each time step.

Then a total of nmN expectation calculations must be performed. Each
expectation calculation roughly requires O(n) calculations.

On the other hand, if we were to evaluate all policies we would require

(mn)N calculations.

Lecture 4 Finite Horizon MDPs



41/44

Dynamic Programming
Uncontrollable State Components

In some problems, a part of the state may be unaffected by the choice of
control. For example, consider the game of tetris.

The state has two components: the board
configuration (which can be represented us-
ing 0s and 1s) and the shape of the falling
block.

The actions include selecting the horizontal
position and rotations.

However, the actions do not affect the shape of the next falling block.

They only influence the board configuration.

Lecture 4 Finite Horizon MDPs



42/44

Dynamic Programming
Uncontrollable State Components

In such cases, we can write the state as (xk , yk) where xk is affected by uk and
yk is not. Let pi represent the pmf of yk . In such cases, the DP algorithm can
be simplified as

Ĵk(xk) =
m∑
i=1

piJk(xk , i)

Ĵk(xk) =
m∑
i=1

pi min
uk∈Uk (xk )

Ewk

{
gk(xk , yk , uk ,wk)+ Ĵk+1(fk(xk , yk , uk ,wk))|yk = i

}
In the case of Tetris, xk is the board configuration and yk is the shape of the
block. There is no exogenous disturbance and the action uniquely determines
the new state. Hence, we can write

Jk(xk) =
m∑
i=1

pi min
uk∈Uk (xk )

{
gk(xk , i , uk) + Jk+1(fk(xk , i , uk))

}
fk represents the new board position and gk could be the number of rows cleared.

Lecture 4 Finite Horizon MDPs



43/44

Dynamic Programming
Countable State Notation

When states are countable, we can simplify the notation. Suppose indices
i and j represent the states. Let

pij(u, k) = P
[
xk+1 = j |xk = i , uk = u

]
How is this different from the transition probabilities of DTMCs?

The DP algorithm can be written as

Jk(i) = min
uk∈Uk (i)

gk(i , uk) +
∑

j∈Sk+1

pij(uk , k)Jk+1(j)


where gk(i , uk) is expected cost of choosing uk in state i . If it depends

on the disturbance, one can treat it as gk(i , uk , j) and move it inside the

summation.

Lecture 4 Finite Horizon MDPs



44/44

Your Moment of Zen

Lecture 4 Finite Horizon MDPs


