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Introduction

Consider a continuous-time dynamical system in which the state at time t
is represented as x(t) € R” and control is represented as u(t) € R™.

The system dynamics are deterministic and denoted as

x(t) = f(x(¢), u(t))

These problems are usually formulated for a finite time horizon T and the
initial state x(0) is assumed to be known.

We will assume that u(t) is continuous and belongs to U for all t € [0, T].
Given a control trajectory {u(t)|t € [0, T]}, we assume that {x(t)|t €
[0, T]} is called the state trajectory and can be uniquely identified.
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Objective

The objective of continuous-time models is very similar to finite-horizon
dynamic programs.

The goal is to find u(t) and also the evolution of states x(t) over the time
period of interest [0, T] that and minimizes

h(x(T)) + /0 g(x(2), u(t))

where h is the terminal cost and g is the cost in dt when the state is x(t)
and a control u(t) is applied.

We will further assume that f, g, and h are continuously differentiable.
Much of our discussion in this lecture will be informal and more rigorous
development of these ideas can be found in control theory texts.
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Example

Consider a continuous-time investment problem in which x(t) is the wealth
at time t and u(t) is the proportion of wealth that is reinvested and (1 —
u(t))x(t) is kept as savings.

Assume that the initial wealth is x(0) and the dynamics are
x(t) = yu(t)x(t)

where 7y is some interest rate-like constant. Suppose we want to maximize
the total savings over a fixed time horizon, then the problem can be written
as

max /0 (1 — u(t))x(t)dt
st.0<u(t)<1Vte[0,T]
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Example

Brachistrochrone Problem:
Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the

shortest time.

A
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Discrete Version

Just as with the DP equations, we can develop equivalent optimality con-
ditions for the continuous time problem. To this end, let us first discretize
the problem and then take some limits.

Suppose the time period of interest [0, T] is divided into N intervals

0 T
o o o ¢ e o ¢ o>
0 6 26 NS

Let the state and control at each of these control points be denoted as xx
and uy, i.e.,

xk = x (ko)
ug = u(kd)
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Discrete Version

The system dynamics is represented as

X1 = Xk + (X, ug)d

The objective function can be written as

N-1
)+ Zg Xk, Uk )0
k=0

The optimal value functions of the discrete problem J*(k, x;) satisfy the
following Bellman equations

J* (N6, x) = h(x)
J*(ké,x) = Znelﬂ {g(x, u)d + J* ((k +1)0, x + f(x, u)5)}
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Discrete Version

The second term inside the minimization in

J* (i, x) = min { gl )0+ J* ((k +1)0,x + F(x, u)0) }

using Taylor series, J* <k5 + 9, x + f(x, u)5> can be approximated as

J*(ké, x) + O J* (k6, )0 + (V. J*(k0,x))TF(x, u)d + o(0)
Hence, we can write the second set of Bellman equations as

0 = min { g(x, u)d + Os J* (k6, x)8 + (V. J* (k8,x)) T F(x, u)d + 0(5)}

Divide both sides by § and take limit as 6 — 0, k§ — t.
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Continuous Version

Suppose lims_,0 k5t JA*(ch7 x) = J*(t,x)Vt € [0, T]. Then, the optimal-
ity conditions in continuous time take the form

J*(T,x) = h(x)

0= mellr} {g(x, u) 4 0, J*(t, x) + (Ve J* (t, %)) T F(x, u)}
This equation is called the Hamilton-Jacobi-Bellman (HJB) equation.

As with discrete time problems, the optimal policy p*(t,x) is attained at
u's which minimize the RHS in the above expression.

We assumed that J*(t, x) is continuously differentiable but sufficiency can
also be established, i.e., if a function J(t, x) solves this equation, then it
is continuously differentiable and is the optimal value function.
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Example: Linear Quadratic Control

Consider a n-dimensional linear system
x(t) = Ax(t) + Bu(t)

where A and B are matrices and the objective is to minimize

(T Qrx(T) + /0 (T @x(t) + u(t) Ru(t)) de

where @, Q7 are symmetric positive semidefinite and R is symmetric pos-
itive definite.

For instance you can formulate the bus bunching problem in Assignment 2
as a LQ control problem in which state represents the deviation from the
ideal spacing and the controls are the operating speeds.

Likewise, think about controlling a drone using some force and the objective

penalizes deviations from the flight path and usage of fuel.
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Example: Linear Quadratic Control

Assuming that the optimal value functions are of the form J*(t,x) =
xTK(t)x, where K(t) is symmetric, write the HJB equations to this prob-
lem.

0= min {XTQX + uTRu 4 8:J(t, x) + (Ve J(t,x)) T (Ax + Bu)}

ueRm

Substituting x" K(t)x for J(t,x) in the above equation,

0= min {XTQX + uTRu + xTK(t)x + 2xTK(t)Ax + 2XTK(t)Bu}

u€Rm
Setting the gradient of the objective wrt u to 0
2BTK(t)x +2Ru =0
Thus, the optimal control is linear and is given by u = —R™!BTK(t)x.

For J(t,x) = x"K(t)x to solve the HJB equation, what conditions must
K(t) satisfy? 13/25
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Example: Linear Quadratic Control

Substituting u = —R™!BTK(t)x in the HJB equation, we get
0= xT(K(t) + K()A+ ATK(t) - K(t)BRBTK (1) + Q) x

Therefore, for J(t,x) = x" K(t)x to solve the HJB equation for all ¢t and
X, we need

K(t) = —K(t)A — ATK(t) + K(t)BR"!BTK(t) — @
with the boundary condition K(T) = Q.

The above equation is an ordinary matrix differential equation and is
quadratic. Hence it is also called the Riccati equation.
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Pontryagin Minimum Principle
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Introduction

Given an optimal state trajectory x*(t), the optimal control trajectory can be
derived for all t € [0, T] using

(1) = g { (" (6.0) + 000" (06" () + Tl (1 )7 (0,

= argmip {0 (8).0) + V0" (00" ()1 (0 )}

Therefore, to find the optimal control trajectory, we just need V,J*(t,x*(t))
values only along the state trajectory but not along the entire state space for
every t.

It turns out that V.J*(t,x*(t)) satisfies a certain differential equation called
the adjoint equation and can be calculated more easily and hence we can avoid

solving the HJB equations.
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Adjoint Equation

The adjoint equation is a system of n first-order differential equations of
the form

p(t) = —fo(X*(t), U*(t))p(t) - ng(X*(t), U*(t))

where

p(t) = Vi J*(t,x*(t))

These can be derived informally by differentiating the HJB equations along
the optimal state and control trajectories.

What is the terminal boundary condition for the above system of equations?

p(T) = Vi (T, x*(T)) = Vxh(x*(T))
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Adjoint Equation

Plugging p(t) back into HJB equations, we can write that u*(t) satisfies
the following set of equations

u*(t) = arg mEIU {g(x*(t), u) + p(t)TF(x*(¢), u)} Vtelo,T]
u
Define a new function H(x, u, p), called the Hamiltonian, where (x, u, p) €
R” x R™ x R" as
H(x, u, p) = g(x,u) + p" f(x, u)
Hence, we can write the optimal control trajectory in terms of the Hamil-

tonian as
u™(t) = arg min H(x"(t), u, p(t)) V't € [0, T]
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Adjoint Equation

Recall that p(t) satisfies the adjoint equation
p(t) = —Vif (x*(t), u*(t)) p(t) — Vg (x*(t), u™(t))

and H(x, u, p) = g(x, u) + p' f(x, u). What is V,H(x*(t), u*(t), p(t))?

Hence, the adjoint equation can also be expressed in terms of the Hamil-

tonian as
p(t) = =V H(x*(t), u™(t), p(t))
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Summary

Proposition (Minimum Principle)

Let u™(t) and x*(t) be an optimal control and state trajectory and p(t) be a
solution to the adjoint equation

p(t) = =VxH(x"(t), u”(t), p(t))
with boundary condition p(T) = Vxh(x*(T)). Then, for all t € [0, T],

u™ () = arg min H(x"(t), u, p(t))

Note that this is a necessary condition. It can further be shown that the Hamil-
tonian along the optimal control and state trajectory H(x"(t), u™(t), p(t)) is a
constant for all t € [0, T].

To find u™ one still needs x*. One option is to find u™ as a function of x* and p
from the Hamiltonian and substitute it into the adjoint equation and solve some
ODEs.
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Example

Recall the investment problem that was discussed earlier in which x = yux.

max /O (1 u(t))x(t)dt
st.0<u(t)<1Vte[0,T]

v

Write the Hamiltonian H(x, u, p) and the adjoint equation.

» Maximize the Hamiltonian over u € [0, 1]

v

Write u*(t) in terms of x*(t) and p(t)

v

Plug it into the adjoint equation and solve an ODE
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Example

> Write the Hamiltonian H(x, u, p) and the adjoint equation.

H(x,u,p) = (1 — u)x + pyux

P(t) = VH(x"(t), u™(t), p(t)) = —yu(t)p(t) — 1 + u™(t)
p(T)=0

> Maximize the Hamiltonian over u € [0, 1]

u™(t) = argmax H(x"(t), u, p(t))
= arg max {(1 —u(t))x*(t) + p(t)'yu(t)x*(t)}
—argmax{ (p(t)y - (0" (1)}

Hence, u*(t) is 0 if p(t) < 1/ and 1 if p(t) >=1/7. 2225



Example

> Write u*(t) in terms of x*(t) and p(t)

wrny )0 if p(t) <1/v
= {1 i p(t) > 1/7

> Plug it into the adjoint equation and solve an ODE

A

What is v*(T)? p(T) =0 p(®)
and hence u*(T) = 0. The

same is true for t in (T—0, T].
Therefore, p(t) = —1

T—-1/y T

23/25

Lecture 22 Continuous-Time Control



Example

For t < T —1/~, u*(t) = 1. Hence, the adjoint equation is

p(t) = —yu*(t)p(t)
Hence, p(t) has an exponential shape in this region.

A A

p(t)

T—-1/y T T—1/y T

Knowledge of u*(t) implies that we can calculate x*(t) using the dynamics
x(t) = f(x(2), u(t)).
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