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HJB Equation
Introduction

Consider a continuous-time dynamical system in which the state at time t
is represented as x(t) ∈ Rn and control is represented as u(t) ∈ Rm.

The system dynamics are deterministic and denoted as

ẋ(t) = f (x(t), u(t))

These problems are usually formulated for a finite time horizon T and the
initial state x(0) is assumed to be known.

We will assume that u(t) is continuous and belongs to U for all t ∈ [0,T ].

Given a control trajectory {u(t)|t ∈ [0,T ]}, we assume that {x(t)|t ∈
[0,T ]} is called the state trajectory and can be uniquely identified.
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HJB Equation
Objective

The objective of continuous-time models is very similar to finite-horizon
dynamic programs.

The goal is to find u(t) and also the evolution of states x(t) over the time
period of interest [0,T ] that and minimizes

h(x(T )) +

∫ T

0

g(x(t), u(t))

where h is the terminal cost and g is the cost in dt when the state is x(t)
and a control u(t) is applied.

We will further assume that f , g , and h are continuously differentiable.
Much of our discussion in this lecture will be informal and more rigorous
development of these ideas can be found in control theory texts.
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HJB Equation
Example

Consider a continuous-time investment problem in which x(t) is the wealth
at time t and u(t) is the proportion of wealth that is reinvested and (1−
u(t))x(t) is kept as savings.

Assume that the initial wealth is x(0) and the dynamics are

ẋ(t) = γu(t)x(t)

where γ is some interest rate-like constant. Suppose we want to maximize
the total savings over a fixed time horizon, then the problem can be written
as

max

∫ T

0

(1− u(t))x(t)dt

s.t. 0 ≤ u(t) ≤ 1∀ t ∈ [0,T ]
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HJB Equation
Example

Brachistrochrone Problem:
Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the
shortest time.
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HJB Equation
Discrete Version

Just as with the DP equations, we can develop equivalent optimality con-
ditions for the continuous time problem. To this end, let us first discretize
the problem and then take some limits.

Suppose the time period of interest [0,T ] is divided into N intervals

0 𝑇

0 𝛿 2𝛿 𝑁𝛿…

Let the state and control at each of these control points be denoted as xk
and uk , i.e.,

xk = x(kδ)

uk = u(kδ)

Lecture 22 Continuous-Time Control



9/25

HJB Equation
Discrete Version

The system dynamics is represented as

xk+1 = xk + f (xk , uk)δ

The objective function can be written as

h(xN) +
N−1∑
k=0

g(xk , uk)δ

The optimal value functions of the discrete problem Ĵ∗(k, xk) satisfy the
following Bellman equations

Ĵ∗(Nδ, x) = h(x)

Ĵ∗(kδ, x) = min
u∈U

{
g(x , u)δ + Ĵ∗

(
(k + 1)δ, x + f (x , u)δ

)}
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HJB Equation
Discrete Version

The second term inside the minimization in

Ĵ∗(kδ, x) = min
u∈U

{
g(x , u)δ + Ĵ∗

(
(k + 1)δ, x + f (x , u)δ

)}

using Taylor series, Ĵ∗
(
kδ + δ, x + f (x , u)δ

)
can be approximated as

Ĵ∗(kδ, x) + ∂kδ Ĵ
∗(kδ, x)δ + (∇x Ĵ

∗(kδ, x))Tf (x , u)δ + o(δ)

Hence, we can write the second set of Bellman equations as

0 = min
u∈U

{
g(x , u)δ + ∂kδ Ĵ

∗(kδ, x)δ + (∇x Ĵ
∗(kδ, x))Tf (x , u)δ + o(δ)

}

Divide both sides by δ and take limit as δ → 0, kδ → t.
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HJB Equation
Continuous Version

Suppose limδ→0,kδ→t Ĵ
∗(kδ, x) = J∗(t, x)∀ t ∈ [0,T ]. Then, the optimal-

ity conditions in continuous time take the form

J∗(T , x) = h(x)

0 = min
u∈U

{
g(x , u) + ∂tJ

∗(t, x) + (∇xJ
∗(t, x))Tf (x , u)

}
This equation is called the Hamilton-Jacobi-Bellman (HJB) equation.

As with discrete time problems, the optimal policy µ∗(t, x) is attained at
u’s which minimize the RHS in the above expression.

We assumed that J∗(t, x) is continuously differentiable but sufficiency can

also be established, i.e., if a function J(t, x) solves this equation, then it

is continuously differentiable and is the optimal value function.
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HJB Equation
Example: Linear Quadratic Control

Consider a n-dimensional linear system

ẋ(t) = Ax(t) + Bu(t)

where A and B are matrices and the objective is to minimize

x(T )TQT x(T ) +

∫ T

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

where Q,QT are symmetric positive semidefinite and R is symmetric pos-
itive definite.

For instance you can formulate the bus bunching problem in Assignment 2
as a LQ control problem in which state represents the deviation from the
ideal spacing and the controls are the operating speeds.

Likewise, think about controlling a drone using some force and the objective

penalizes deviations from the flight path and usage of fuel.
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HJB Equation
Example: Linear Quadratic Control

Assuming that the optimal value functions are of the form J∗(t, x) =
xTK (t)x , where K (t) is symmetric, write the HJB equations to this prob-
lem.

0 = min
u∈Rm

{
xTQx + uTRu + ∂tJ(t, x) + (∇xJ(t, x))T(Ax + Bu)

}
Substituting xTK (t)x for J(t, x) in the above equation,

0 = min
u∈Rm

{
xTQx + uTRu + xTK̇ (t)x + 2xTK (t)Ax + 2xTK (t)Bu

}
Setting the gradient of the objective wrt u to 0

2BTK (t)x + 2Ru = 0

Thus, the optimal control is linear and is given by u = −R−1BTK (t)x .

For J(t, x) = xTK (t)x to solve the HJB equation, what conditions must
K (t) satisfy?
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HJB Equation
Example: Linear Quadratic Control

Substituting u = −R−1BTK (t)x in the HJB equation, we get

0 = xT
(
K̇ (t) + K (t)A + ATK (t)− K (t)BR−1BTK (t) + Q

)
x

Therefore, for J(t, x) = xTK (t)x to solve the HJB equation for all t and
x , we need

K̇ (t) = −K (t)A− ATK (t) + K (t)BR−1BTK (t)− Q

with the boundary condition K (T ) = QT .

The above equation is an ordinary matrix differential equation and is

quadratic. Hence it is also called the Riccati equation.
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Pontryagin Minimum Principle
Introduction

Given an optimal state trajectory x∗(t), the optimal control trajectory can be
derived for all t ∈ [0,T ] using

u∗(t) = arg min
u∈U

{
g(x∗(t), u) + ∂tJ

∗(t, x∗(t)) +∇x(J∗(t, x∗(t)))Tf (x∗(t), u)

}
= arg min

u∈U

{
g(x∗(t), u) +∇x(J∗(t, x∗(t)))Tf (x∗(t), u)

}

Therefore, to find the optimal control trajectory, we just need ∇xJ
∗(t, x∗(t))

values only along the state trajectory but not along the entire state space for
every t.

It turns out that ∇xJ
∗(t, x∗(t)) satisfies a certain differential equation called

the adjoint equation and can be calculated more easily and hence we can avoid

solving the HJB equations.
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Pontryagin Minimum Principle
Adjoint Equation

The adjoint equation is a system of n first-order differential equations of
the form

ṗ(t) = −∇x f
(
x∗(t), u∗(t)

)
p(t)−∇xg

(
x∗(t), u∗(t)

)
where

p(t) = ∇xJ
∗(t, x∗(t))

These can be derived informally by differentiating the HJB equations along
the optimal state and control trajectories.

What is the terminal boundary condition for the above system of equations?

p(T ) = ∇xJ
∗(T , x∗(T )) = ∇xh(x∗(T ))
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Pontryagin Minimum Principle
Adjoint Equation

Plugging p(t) back into HJB equations, we can write that u∗(t) satisfies
the following set of equations

u∗(t) = arg min
u∈U

{
g(x∗(t), u) + p(t)Tf (x∗(t), u)

}
∀ t ∈ [0,T ]

Define a new function H(x , u, p), called the Hamiltonian, where (x , u, p) ∈
Rn × Rm × Rn as

H(x , u, p) = g(x , u) + pTf (x , u)

Hence, we can write the optimal control trajectory in terms of the Hamil-
tonian as

u∗(t) = arg min
u∈U

H(x∗(t), u, p(t)) ∀ t ∈ [0,T ]
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Pontryagin Minimum Principle
Adjoint Equation

Recall that p(t) satisfies the adjoint equation

ṗ(t) = −∇x f
(
x∗(t), u∗(t)

)
p(t)−∇xg

(
x∗(t), u∗(t)

)
and H(x , u, p) = g(x , u) + pTf (x , u). What is ∇xH(x∗(t), u∗(t), p(t))?

Hence, the adjoint equation can also be expressed in terms of the Hamil-
tonian as

ṗ(t) = −∇xH(x∗(t), u∗(t), p(t))
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Pontryagin Minimum Principle
Summary

Proposition (Minimum Principle)

Let u∗(t) and x∗(t) be an optimal control and state trajectory and p(t) be a
solution to the adjoint equation

ṗ(t) = −∇xH(x∗(t), u∗(t), p(t))

with boundary condition p(T ) = ∇xh(x∗(T )). Then, for all t ∈ [0,T ],

u∗(t) = arg min
u∈U

H(x∗(t), u, p(t))

Note that this is a necessary condition. It can further be shown that the Hamil-
tonian along the optimal control and state trajectory H(x∗(t), u∗(t), p(t)) is a
constant for all t ∈ [0,T ].

To find u∗ one still needs x∗. One option is to find u∗ as a function of x∗ and p

from the Hamiltonian and substitute it into the adjoint equation and solve some

ODEs.
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Pontryagin Minimum Principle
Example

Recall the investment problem that was discussed earlier in which ẋ = γux .

max

∫ T

0

(1− u(t))x(t)dt

s.t. 0 ≤ u(t) ≤ 1∀ t ∈ [0,T ]

I Write the Hamiltonian H(x , u, p) and the adjoint equation.

I Maximize the Hamiltonian over u ∈ [0, 1]

I Write u∗(t) in terms of x∗(t) and p(t)

I Plug it into the adjoint equation and solve an ODE
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Pontryagin Minimum Principle
Example

I Write the Hamiltonian H(x , u, p) and the adjoint equation.

H(x , u, p) = (1− u)x + pγux

ṗ(t) = ∇xH(x∗(t), u∗(t), p(t)) = −γu∗(t)p(t)− 1 + u∗(t)

p(T ) = 0

I Maximize the Hamiltonian over u ∈ [0, 1]

u∗(t) = arg max
u∈U

H(x∗(t), u, p(t))

= arg max

{
(1− u(t))x∗(t) + p(t)γu(t)x∗(t)

}
= arg max

{
(p(t)γ − 1)u(t)x∗(t)

}
Hence, u∗(t) is 0 if p(t) < 1/γ and 1 if p(t) >= 1/γ.
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Pontryagin Minimum Principle
Example

I Write u∗(t) in terms of x∗(t) and p(t)

u∗(t) =

{
0 if p(t) < 1/γ

1 if p(t) ≥ 1/γ

I Plug it into the adjoint equation and solve an ODE

What is u∗(T )? p(T ) = 0
and hence u∗(T ) = 0. The
same is true for t in (T−δ,T ].
Therefore, ṗ(t) = −1

𝑇𝑇 − 1/𝛾

𝑝(𝑡)
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Pontryagin Minimum Principle
Example

For t < T − 1/γ, u∗(t) = 1. Hence, the adjoint equation is

ṗ(t) = −γu∗(t)p(t)

Hence, p(t) has an exponential shape in this region.

𝑇𝑇 − 1/𝛾

𝑝(𝑡)

𝑇𝑇 − 1/𝛾

𝑢∗(𝑡)

1

Knowledge of u∗(t) implies that we can calculate x∗(t) using the dynamics

ẋ(t) = f (x(t), u(t)).
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Your Moment of Zen
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