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Previously on Markov Decision Processes

The objective in the discounted cost MDP problem is

lim
N→∞

Ew

N−1∑
k=0

{
αkg(xk , uk ,wk)

}
Under most practical situations that we encounter, this limit exists and we
can also exchange the limit and expectation and write

Ew

∞∑
k=0

{
αkg(xk , uk ,wk)

}
Likewise, given a particular policy π = {µ0, µ1, . . .}, the value function
can be written as

Jπ(x0) = lim
N→∞

Ew

{ N−1∑
k=0

αkg(xk , µk(xk),wk)

}
We will make appropriate assumptions (such as bounded costs) that will

guarantee the existence of the above limit.
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Lecture Outline

1 Partially Observable MDPs

2 Risk-Sensitive MDPs
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Lecture Outline

Partially Observable MDPs
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Partially Observable MDPs
Introduction

In many situations, decision makers may not have access to the state of
the system but can only see some related observations.

I Uncertainty regarding the state of a MDP

I Allows information acquisition

I Transition probabilities are known
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Partially Observable MDPs
Applications: Human Learning

I States: Unlearned (0) and learned (1)

I Observations: Correct or incorrect

I Actions: Simply present item, Present and observe students response,
Remove the item

The objective is to minimize the instruction costs associated with the three
actions.

I Smallwood, R. D. (1971). The analysis of economic teaching strategies
for a simple learning model. Journal of Mathematical Psychology, 8(2),
285-301.
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Partially Observable MDPs
Applications: Medical Diagnosis

I States: Physiological or psychological states

I Observations: Physician state of information

I Actions: Treatments
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Partially Observable MDPs
Applications: Searching for Moving Objects

I States: Object’s location

I Observations: Whether the object is at a location

I Actions: Look at locations

Objectives:
What strategy will produce the minimum expected number of looks needed to
detect the target, and what is the value of this minimum number of looks?

What strategy will produce the maximum probability of detecting the target
within n looks available, and what is the value of this maximum probability?

I Pollock, S. M. (1970). A simple model of search for a moving target.
Operations Research, 18(5), 883-903.
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Partially Observable MDPs
Example: Machine Replacement

Consider a machine with two components:

I States: 0, 1, 2 (Number of failed components)

I Observations: θ1(non-defective), θ2(defective)

I Actions: Manufacture, Examine, Inspect, Replace

Let π = [π0, π1, π2] be a probability distribution over the state space, also
called as information vectors.
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Partially Observable MDPs
Example: Machine Replacement

Actions P(a) Q(a) R(a)

Manufacture

0.81 0.18 0.01 1 0 0.9025
0 0.9 0.1 1 0 0.475
0 0 1 1 0 0.25

Examine

0.81 0.18 0.01 1 0 0.6525
0 0.9 0.1 0.5 0.5 0.225
0 0 1 0.25 0.75 0

Inspect

1 0 0 1 0 -0.5
1 0 0 1 0 -0.15
1 0 0 1 0 -0.25

Replace

1 0 0 1 0 -2
1 0 0 1 0 -2
1 0 0 1 0 -2

Optimal policy for the control horizon with n = 3 Optimal policy for the control horizon with n = 4 
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Partially Observable MDPs
Finite Horizon Model Formulation

Time periods T : A finite number of time steps

Core Process {xt}t∈T : A finite state Markov chain with N states

Observation Process {yt}t∈T : Outputs observed

Action Space A: at represents an action taken at time t

Transition Probabilities:

pij(at) = Pr[xt+1 = j |xt = i , at ]

The probability that the core process moves to j from i when at is chosen.

qjk(at) = Pr[yt+1 = k |xt+1 = j , at ]

Probability that we observe k when the core process moves to j .
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Partially Observable MDPs
Finite Horizon Model Formulation

Data available for decision making at t: dt = (π(0), k1, a1, . . . , at−1, kt)

Let π(t) = [π1(t), π2(t), . . . , πN(t)] be a distribution over the state space,
where πi (t) = P[xt = i | dt ]

It can be shown using Bayes’ formula that

πj(t + 1) = P[xt+1 = j | dt+1 = (dt , at , yt+1 = k)]

=
qjk(at)

∑
i pij(at)πi (t)∑

j′ qj′k(at)
∑

i pij′(at)πi (t)

Note that π(t) contains all the information that the decision maker can

extract to choose a control at time t.
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Partially Observable MDPs
Components of POMDP

Proposition

For any fixed sequence of actions a1, a2, . . . , at ∈ A, the probabilities
{π(t)}t∈T is a Markov process.

Hence, a POMDP can be converted into a Markov decision process.

However, note that while the core process was defined on a finite state

space, the modified Markov process is defined on an uncountable state

space.
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Partially Observable MDPs
Components of POMDP

States: π(t)

Control: at ∈ A

Dynamics: π(t + 1) = ft(π(t), at , k)

Disturbance: πj(t + 1) =
qjk(at)

∑
i pij(at)πi (t)∑

j′ qj′k(at)
∑

i pij′(at)πi (t)

Rewards: Suppose that a reward of wijk(at) is received when action at is
taken and the core process makes a transition from i to j and produces an
output k .

Then, the expected one-step reward is π(t)Tg(at), where

gi (at) =
∑
j

∑
k

wijk(at)pij(at)qjk(at)
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Partially Observable MDPs
Bellman Equations

Suppose the terminal rewards are JN(π) are assumed. Then, the Bellman
equations can be written as

Jt (π(t)) = max
a∈A

{
π(t)Tg(a) +

∑
k

P [k |π(t), a] Jt+1

(
ft(π(t), a, k)

)}
= max

a∈A

{
π(t)Tg(a) +

∑
i,j,k

πi (t)pij(a)qjk(a)Jt+1

(
ft(π(t), a, k)

)}
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Partially Observable MDPs
Sondik’s Algorithm

Theorem

Jt(π) is piecewise linear and convex, and can thus be written as
Jt(π(t)) = maxs {

∑
i α

s
i (t)πi (t)} for set of vectors αs(t), where

s = 1, 2, . . . ,S .

Suppose we are given the vector of α’s at time step t+1, then the Bellman’s
equations can be re-written as follows:

Jt(π(t)) = max
a∈A

{∑
i

πi (t)

{
gi (a) +

∑
j,k

pij(a)qjk(a)Jt+1

(
ft(π(t), a, k)

)}
︸ ︷︷ ︸

α values

}
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Partially Observable MDPs
Sondik’s Algorithm

The information vector space can thus be partitioned into convex regions
where a certain action is optimal.

𝜋0 𝜋0 𝜋1

The algorithm proceeds by selecting an arbitrary π0 and solving the Bell-
man equations to first get the optimal α∗ vector.

A system of linear equations are then constructed for which Jt(π(t)) =
π(t)Tα∗. The same action is optimal in the state space enclosed by these
equations.

Another vector π1 is selected on the boundary of this region and this

process is repeated till the state space is fully explored.
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Partially Observable MDPs
Additional Reading

I Monahan, G. E. (1982). State of the art-a survey of partially observable
Markov decision processes: theory, models, and algorithms. Management
Science, 28(1), 1-16.

I Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of
partially observable Markov processes over a finite horizon. Operations
research, 21(5), 1071-1088.
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Lecture Outline

Risk-Sensitive MDPs
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Risk-Sensitive MDPs
Introduction

The objectives in all the models we saw so far minimized or maximized the
expected value of a random variable.

Consider the following experiment. Imagine an unbiased coin is tossed and
if it lands on H, we get |2. If we see T, the game ends.

Every time we see H, the coin is tossed one more time and the winnings are
doubled. Would you pay |100 to enter this game? What is the expected
amount you could win?

This example, called the St. Petersburg paradox, indicates that individuals

don’t always care about the expected value of an outcome and can have

some risk preferences.
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Risk-Sensitive MDPs
Introduction

The objectives in MDPs have been extended to incorporate risk measures
using some transformations of the rewards or using the variance.
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Risk-Sensitive MDPs
Introduction

Consider a lottery in which you can win a reward of |0 or |100 with equal
probability.

Suppose you are to choose between entering the lottery and receiving |5
for sure, which option would you choose? What if I give you |20 for sure?

The smallest amount for which you would be willing to pass up the lottery
is called certainty equivalent.

Risk-averse behavior is commonly modeled using this idea and concave
utility functions in behavioral economics.
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Risk-Sensitive MDPs
Introduction

One can also model risk-seeking behavior using convex utility functions.

Reward

Utility

0 10020

1 2
𝑢
0

+
𝑢
1
0
0

Suppose the earlier example is modified as follows. The lottery gives you a reward
of |10,000 or |10,100 with equal probability or |10,020 for sure. Which option
would you choose?

The answer is likely to change for most individuals, but for mathematical reasons,

we will assume that the certainty equivalent is independent of the current wealth.
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Risk-Sensitive MDPs
Exponential Utilities

Risk attitudes of individuals can be captured using exponential utility functions
of the following form

u(g) = −(sgnγ)e−γg

where sgn is the signum function, g is the reward, and u denotes the utility. These
type of functions satisfy the property that the certainty equivalent is independent
of current wealth.

A positive γ implies that the utility function is concave and represents risk aver-
sion. A negative γ on the other hand implies risk seeking attitude.

One can find the γ value of an individual using some questions like the ones

presented before and by fitting the above curve to match the data.
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Risk-Sensitive MDPs
Bellman Equations for Risk-Sensitive MDPs

One way to model an MDP for a risk-sensitive decision maker is to transform
the problem from finding the expected rewards to finding the expected utilities
using the certainty equivalents.

Imagine a risk-averse agent (positive γ) in a finite horizon setting who follows a
policy {µk}N−1

k=0 . Fixing the policy induces a time-varying Markov chain for which
we can write

uk(Jk(i)) =
n∑

j=1

pij(µk(i))uk+1

(
gk(i , µk(i), j) + Jk+1(j)

)
J values here represent the certainty equivalents. Recall that for risk-sensitive
agents u(g) = −e−γg . Hence, the above equation can be written as

uk(Jk(i)) =
n∑

j=1

pij(µk(i))eγgk (i,µk (i),j)uk+1

(
Jk+1(j)

)
Defining pij(µk(i))eγgk (i,µk (i),j) as qij(µk(i), the disutility contribution matrix, we
get

uk(Jk(i)) =
n∑

j=1

qij(µk(i))uk+1

(
Jk+1(j)

)
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Risk-Sensitive MDPs
Bellman Equations for Risk-Sensitive MDPs

Thus, one can solve for the utilities using backward induction and recover
the certainty equivalents using

Jk(i) = − 1

γ
ln[−γuk(i)]

So far, we have found the value functions associated with a policy. We
can use this as a subroutine in a PI-like algorithm.

Extensions to infinite horizon discounted and average cost MDPs also ex-

ist.
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Risk-Sensitive MDPs
Alternate Approaches

The reason for using exponential utilities is that we can derive DP algorithms to
address the problem.

However, in many transportation and finance applications, we wish to minimize
an objective consisting of some function the expected value and variance of a
random variable.

I Mean-variance tradeoff: J − λ
√
V

I Sharpe Ratio: J/
√
V

These objectives are not DP friendly but we can find still find the variance of a

policy.
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Risk-Sensitive MDPs
Variance of MDPs

Consider a random variable Gµ which represents the discounted rewards of an
MDP over an infinite horizon assuming some initial distribution (ignored in the
notation for brevity)

Gµ =
∞∑
k=0

αkg(xk , uk , xk+1)

Let F represent the CDF of the above random variable. That is,

Fµ(y) = P[Gµ ≤ y ]

Let the mth moment of Gµ be denoted as Λ
(m)
µ , i.e.,

Λ(m)
µ =

∫ ∞
0

ymdFµ(y)

What is Λ
(1)
µ ? Jµ. Thus, the variance of the policy can be written as

Vµ = Λ(2)
µ − (Jµ)2
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Risk-Sensitive MDPs
Variance of MDPs

Define a vector θµ ∈ Rn as

θµ(i) =
n∑

j=1

pij(µ(i))
(
g(i , µ(i), j) + αJµ(j)

)2
− (Jµ)2

Proposition

The vector of variances solves the following system of equations

Vµ = θµ + α2PµVµ

Hence, variances can be derived from a policy evaluation-like step using

(I − α2Pµ)−1θµ.
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Risk-Sensitive MDPs
Variance of MDPs

It turns out that variances do not satisfy the monotonicy property of DP.

Some studies have tried to formulate alternate frameworks in which the
objective is to optimize the expected value subject to a constraint on the
variance.

RL methods for solving this problem using policy gradients also exists.
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Risk-Sensitive MDPs
Additional Reading

I Howard, R. A., & Matheson, J. E. (1972). Risk-sensitive Markov decision
processes. Management science, 18(7), 356-369.

I Sobel, M. J. (1982). The variance of discounted Markov decision
processes. Journal of Applied Probability, 19(4), 794-802.

I Sobel, M. J. (1994). Mean-variance tradeoffs in an undiscounted MDP.
Operations Research, 42(1), 175-183.
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Your Moment of Zen
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