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Previously on Markov Decision Processes

The objective in the discounted cost MDP problem is

lim
N→∞

Ew

N−1∑
k=0

{
αkg(xk , uk ,wk)

}
Under most practical situations that we encounter, this limit exists and we
can also exchange the limit and expectation and write

Ew

∞∑
k=0

{
αkg(xk , uk ,wk)

}
Likewise, given a particular policy π = {µ0, µ1, . . .}, the value function
can be written as

Jπ(x0) = lim
N→∞

Ew

{ N−1∑
k=0

αkg(xk , µk(xk),wk)

}
We will make appropriate assumptions (such as bounded costs) that will

guarantee the existence of the above limit.
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Previously on Markov Decision Processes

How do the Markov chains look like when we deal with the ex ante value func-
tions?

1, [1] 2, [1]

3, [1,101] 3, [1,1] 4, [0]

1

0.9 0.1

1

1
1

Pµ =

4 1 2 3


4 1 0 0 0
1 0 0 1 0
2 0 0 0 1
3 0.1 0.9 0 0

Again, the transition matrices of total cost MDP will be assumed to include only
the green sub-matrix and we evaluate the cost of the policy using (I −Pµ)−1gµ.1 0 0

0 1 0
0 0 1

−
 0 1 0

0 0 1
0.9 0 0

−1  1
1

0.9(1) + 0.1(1)

 =

30
29
28


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Previously on Markov Decision Processes

Let the state space be X = {1, 2, . . . , n, t} where t represents a termination
state. Let as before, pij(u) represent the probability of reaching state j when u
is chosen in state i . We further assume that

I The terminal state is absorbing, i.e., ptt(u) = 1, ∀ u ∈ U(t).

I The terminal state is cost-free, i.e., g(t, u) = 0∀ u ∈ U(t).

A policy µ is proper if i → t for all i = 1, . . . , n in the Markov chain associated
with µ.

We make two main assumptions for the analysis of total cost MDPs:

Assumption 1: There exists at least one proper policy

Assumption 2: For all improper policies µ, Jµ(i) is ∞ for at least one i

For stochastic shortest paths, the above conditions are met if the destination is
reachable from all nodes and the link travel times are positive.
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Lecture Outline

1 Introduction

2 Discounted Problems

3 Average Cost Problem
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Lecture Outline

Introduction
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Introduction
Assumptions

So far we have looked at problems in which time was discretized into
equal intervals, i.e., the time between actions and state transitions was
one period.

However, there are several problems (e.g., queuing) in which

I Time between actions and state transitions is a random variable
(can also depend on the current state and choice of control)

I Cost is continuously accumulated

Such problems are also called Semi-Markov Decision Processes. For this

lecture, assume infinite horizon problems with finite states and controls

but random time (could be discrete or continuous).
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Introduction
Assumptions

Since time is continuous, we denote the state and control at t using x(t)
and u(t).

𝑥0

𝑢0

𝑥1

𝑢1

𝑥2

𝑢2

𝑥3

𝑢3

𝑥4

𝑢4

Let tk be the time of occurrence of the kth transition. Assume t0 = 0.
Define xk and uk as states and controls that satisfy

x(t) = xk for tk ≤ t < tk+1

u(t) = uk for tk ≤ t < tk+1
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Introduction
Notation

The transition probabilities are now replaced with joint transition distribu-
tions which predict what future state we might go to and after how much
time.

Given a state i and action u, define Qij(τ, u) the joint distribution of the
transition interval and the future state, i.e.,

Qij(τ, u) = P
[
tk+1 − tk ≤ τ, xk+1 = j |xk = i , uk = u

]
What is the maximum value Qij(·, u) can take? Set τ →∞.

The marginal distribution of the future
state is the usual transition distribution
pij(u). Mathematically,

pij(u) = P
[
xk+1 = j |xk = i , uk = u

]
= lim
τ→∞

Qij(τ, u)

1

𝑝𝑖𝑗(𝑢)

𝜏0
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Introduction
Example

We will use the following problem as a running example in this lecture.

Consider a queue in which the time between successive arrivals of customers
is uniform [0, τmax]. The server processes customers only in batches due
to a setup cost of K (which is incurred when serving a new batch of
customers).

Suppose decisions are made just before a new customer joins the queue.

The state is defined as the number of customers in the queue and the

choices available are to serve S or idle D. What are Qij(τ,S) and Qij(τ,D)?
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Introduction
Notation

As mentioned earlier, τ can be a discrete random variable as well. In this
case, the transition distribution may be imagined to look as

1

𝑝𝑖𝑗(𝑢)

𝜏0

By definition of conditional probability, P
[
A|B

]
= P

[
A ∩ B

]
/P
[
B
]
. Thus,

assuming pij(u) > 0, the conditional cumulative distribution function of
the inter-transition time is given by

P
[
tk+1 − tk ≤ τ |xk = i , xk+1 = j , uk = u

]
=

Qij(τ, u)

pij(u)
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Introduction
Notation

Recall that E
[
X
]

=
∫
x dFX (x). Let τ represent the inter-transition time.

We will abuse notation a bit and use τ for the realizations of the inter-
transition times as well. Therefore, the conditional expected value of τ
given i , j , and u can be written as

τ̄ = E
[
τ |i , j , u

]
=

∫ ∞
0

τ
dQij(τ, u)

pij(u)

=

∫ ∞
0

τ
qij(τ, u)

pij(u)
dτ

where qij is like a scaled density function. What is the expected transition
time when a control u is applied in state i?

τ̄i (u) =
n∑

j=1

pij(u)E[τ |i , j , u]

=
n∑

j=1

∫ ∞
0

τdQij(τ, u)
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Introduction
Additional Assumptions

τ̄i (u) is assumed to be finite. Notice that the controls are assumed to be
chosen based on which state we are in and not based on how much time
elapsed since last transition.

This assumption makes the problem tractable since we won’t have to deal
with continuous and infinite state spaces.

Lecture 24 Semi-Markov Decision Processes



14/28

Introduction
Memoryless Property

However, there is one exception where letting the controls depend on the
time elapsed isn’t advantageous.

If the joint transition distributions are of the form

Qij(τ, u) = pij(u)(1− e−νi (u)τ )

then from the earlier expression of the conditional cdf,

P[Transition interval ≤ τ |i , u] = 1− e−νi (u)τ

which implies that the transition time interval is exponentially distributed
and hence has the memoryless property, i.e.,

P[Transition interval > a + b |Transition interval > a]

= P[Transition interval > b]
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Lecture Outline

Discounted Problems
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Discounted Problems
Objective

Costs are accumulating continuously in SMDPs. Hence, we view g(i , u)
as a “cost rate”. That is, the cost incurred in dt is g(i , u)dt.

To continuously discount the cost rate, we use a exponentially decaying
discount parameter (continuous analogue of a geometric progression) e−βτ

and write the objective of the SMDP as

lim
T→∞

E
{∫ T

0

e−βtg(x(t), u(t))dt

}

Thus, given a policy π = {µ0, µ1, . . . , }, we can define the value functions
as

Jπ(i) = lim
N→∞

N−1∑
k=0

E
{∫ tk+1

tk

e−βtg(xk , µk(xk))dt|x0 = i

}
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Discounted Problems
Transition Costs

Proposition

Let G(i , u) be the expected transition cost when action u is taken in state i .
Then,

G(i , u) = g(i , u)
n∑

j=1

∫ ∞
0

1− e−βτ

β
dQij(τ, u)

Why doesn’t it simply equal g(i , u)τ̄i (u)?

Proof.

G(i , u) = E
{∫ τ

0

e−βtg(i , u)dt

}
= g(i , u)E

{∫ τ

0

e−βtdt

}
= g(i , u)Ej

{
Eτ

{∫ τ

0

e−βtdt | j
}}
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Discounted Problems
Transition Costs

Proof.

= g(i , u)
n∑

j=1

pij(u)

{
Eτ

{∫ τ

0

e−βtdt | j
}}

= g(i , u)
n∑

j=1

pij(u)

∫ ∞
0

(∫ τ

0

e−βtdt

)
dQij(τ, u)

pij(u)

= g(i , u)
n∑

j=1

pij(u)

∫ ∞
0

(
1− e−βτ

β

)
dQij(τ, u)

pij(u)

= g(i , u)
n∑

j=1

∫ ∞
0

1− e−βτ

β
dQij(τ, u)

�

Thus, using Qij(τ, u), which is problem data, we can compute G(i , u) for all
state-action pairs.
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Discounted Problems
Bellman Equations

To derive Bellman equations informally, we breakdown the cost into sum
of the expected cost from the first transition and the value function from
the next state which is appropriately discounted.

Jπ(i) = G (i , µ0(i)) + E[e−βτJπ1(j)|i , µ0(i)]

where π1 = {µ1, µ2, . . .}. Using a similar logic to calculate the above
expectation,

E[e−βτJπ1(j)|i , µ0(i)] = Ej

[
Eτ [e−βτ |j ]Jπ1(j)|i , µ0(i)

]
=

n∑
j=1

pij(µ0(i))
[
Eτ [e−βτ |j ]Jπ1(j)|i , µ0(i)

]
=

n∑
j=1

pij(µ0(i))

(∫ ∞
0

e−βτ
dQij(τ, µ0(i))

pij(µ0(i))

)
Jπ1(j)

=
n∑

j=1

(∫ ∞
0

e−βτdQij(τ, µ0(i))

)
Jπ1(j)
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Discounted Problems
Bellman Equations

Let mij(u) be defined as

mij(u) =

∫ ∞
0

e−βτdQij(τ, u)

Thus, the Bellman equations can be written in a more familiar form as

Jπ(i) = G (i , µ0(i)) +
n∑

j=1

mij(u)Jπ1(j)

How is this different from the Bellman equations of regular MDPs? There
is no explicit discount factor in the above expression.

Thus, one could view this as a total cost problem in which choosing u in

state i can send us to j with probability mij(u) and to a fictitious terminal

state with probability
(

1−
∑n

j=1 mij(u)
)

!
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Discounted Problems
Bellman Equations

We can thus use results from total cost MDPs to show existence of solu-
tions to the SMDP. What assumptions do we need for this exercise?

I We can suppose that the fictitious destination or terminal state is
cost free.

I The terminal state can be reached w.p. 1 from any state i .

We can be assured that the second condition is applicable if
∑n

j=1 mij(u) <

1. It easy to show that this holds because of the assumption τ̄i (u) <∞.
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Discounted Problems
Bellman Equations

Thus, a unique solution to the following system of equations exists and
solves the SMDP

J∗(i) = min
u∈U(i)

{
G (i , u) +

n∑
j=1

mij(u)J∗(j)

}

We can use any of the three methods: VI, PI or LP that were discussed in

the total cost MDP case.
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Discounted Cost Problems
Example

In the queuing example, suppose the one-stage expected cost G (i ,S) = K .
If the cost per unit time of a customer who hasn’t been served is c , what
is G (i ,D)?

G (i ,D) = ci
n∑

j=1

∫ τmax

0

1− e−βτ

β
dQij(u,D)

= ci

∫ τmax

0

1− e−βτ

βτmax
dτ

Write the Bellman equations. Using the definition of mij(u),

mi1(S) = mi,i+1(D) =

∫ τmax

0

e−βτ

τmax
dτ =

1− e−βτmax

βτmax

J(i) = min

{
K + mi1(S)J(1), G (i ,D) + mi,i+1(D)J(i + 1)

}
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Lecture Outline

Average Cost Problems
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Average Cost Problems
Objective

One can formulate SMDPs for average cost problems as well. The objective
in these problems can be written as

lim
T→∞

1

T
E
{∫ T

0

g(x(t), u(t))dt

}

It helps to reformulate the above objective into the following equivalent
version:

lim
N→∞

1

E[tN ]
E
{∫ tN

0

g(x(t), u(t))dt

}
Since we are interested in minimizing the average costs, the one-stage
expected cost from choosing u in state i can be written as

G (i , u) = g(i , u)τ̄i (u)
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Average Cost Problems
Value Functions

The value function of starting from state i and following policy π =
{µ0, µ1, . . .} is

Jπ(i) = lim
N→∞

1

E[tN |x0 = i , π]
E
{ N−1∑

k=0

∫ tk+1

tk

g(xk , µk(xk))dt | x0 = i

}

We can construct what is referred to as an embedded Markov chain with
transition probabilities pij(u) = limτ→∞Qij(τ, u).

If the embedded Markov chain satisfies a unichain-like conditions, it can

be shown that J∗(i) is independent of the starting state i !
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Average Cost Problems
Bellman Equations

Under such conditions Bellman equations of the average cost SMDP takes
the following form

h(i) = min
u∈U(i)

{
G (i , u)− λτ̄i (u) +

n∑
j=1

pij(u)h(j)

}

Setting τ̄i (u) gives us the original average cost MDP.
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Your Moment of Zen
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