
CE 273
Markov Decision Processes

Lecture 23

Inverse Reinforcement Learning

Lecture 23 Inverse Reinforcement Learning

2/37

Previously on Markov Decision Processes

Discrete choice theory is built on the assumption that decision makers calculate
the utility from different alternatives and choose the one with maximum utility.

But an analyst may not have access to many attributes that individuals consider
when choosing an alternative. For instance, consider the problem of selecting a
mode.

Decision maker’s world:

I Cost

I Time

I Reliability

I Safety

Utility of a mode is some function
f (Cost, Time, Reliability, Safety)

Analyst’s world:

I Cost

I Time

Utility of a mode is some paramet-
ric function u(Cost, Time; β) + ran-
dom component

The random component captures the effect of all unobserved or latent attributes

such as reliability and safety which are difficult to measure.

Lecture 23 Inverse Reinforcement Learning

3/37

Previously on Markov Decision Processes

Attributes/State

Optimization
Model

Action

Observed attributes 𝜖 Parameters 𝛽

What is the probability
that this action is optimal?

Decision Maker Analyst

Optimal መ𝛽 which maximizes this probability

Different optimization models maybe used in different contexts:

I Find the maximum of a bunch of numbers → Static choice models

I Knapsack problems → Multiple discrete-continuous choice models

I Markov Decision Process → Dynamic choice models

Lecture 23 Inverse Reinforcement Learning

4/37

Previously on Markov Decision Processes

Just like static choice models, the expression for the probability can be
written as follows

P[at |xt] = P[vt(xt , at) + εt(at) > vt(xt , a
′
t) + εt(a

′
t)∀ a′t ∈ At\{at}]

where vt(xt , at) is the conditional value function, which is a measure of
the utility from choosing at at time t and behaving “optimally” thereafter.

Recall that the conditional value function was the utility of choosing an
action and behaving optimally thereafter. Hence, we can write,

vt(xt , at) = u(xt , at) + α

∫
V̄t+1(xt+1)f (xt+1|xt , at)dxt+1

If εs are assumed to be Gumbel distributed, the above expectation has a
closed form solution which is given by

V̄t(xt) = γ + ln
∑
at∈At

exp
(
vt(xt , at)

)
Lecture 23 Inverse Reinforcement Learning

5/37

Dynamic Choice Models
Maximum Likelihood Estimation

The one-step utilities are parameterized linearly using β’s as done in static mod-
els, i.e., we can write u(xt , at) as u(xt , at ;β).

Likewise, the transition beliefs are parameterized by λ. That is, we can write
f (xt+1|xt , at) as f (xt+1|xt , at ;λ).

Finally, we can use the time-dependent choice probabilities to define a likelihood
function and maximize it to obtain estimates of the discount factor and utility
functions (and also the transition functions)

P[ant |xnt ;α, β, λ] =
exp

(
vnt(xnt , ant ;α, β, λ)

)∑
a′nt∈Ant

exp
(
vnt(xnt , a′nt ;α, β, λ)

)
where n denotes an observation. The objective of the estimation procedure is to
find (α̂, β̂, λ̂) which is a solution to

max
α∈[0,1]

LL(α, β, λ) =
N∑

n=1

T∑
t=1

ln

(
P[ant |xnt ;α, β, λ]

)

Lecture 23 Inverse Reinforcement Learning

6/37

Lecture Outline

1 Inverse Reinforcement Learning

2 Apprenticeship Learning

Lecture 23 Inverse Reinforcement Learning

7/37

Lecture Outline

Inverse Reinforcement Learning

Lecture 23 Inverse Reinforcement Learning

8/37

Inverse Reinforcement Learning
Introduction

Inverse RL like dynamic discrete choice models also attempts to recover the
problem data by observing actions taken by an agent, assuming that the agent
was behaving optimally.

We will assume that agents maximize rewards.

The utilities/rewards are also linearly parametrized using a set of features. How-
ever, there are a few key differences:

I The rewards are assumed deterministic and there are no latent
components unlike random utility models.

I Thus, the optimization formulations involved are not stochastic.

I Beliefs on transition probabilities are not usually modeled and we assume
that we have access to the environment to test any policy.

Lecture 23 Inverse Reinforcement Learning

9/37

Inverse Reinforcement Learning
Introduction

Assume that an expert demonstrates his/her actions in an environment
using a policy µ∗. The objective is to find the one-stage rewards g(x , u)
that the agent had in mind.

In reality, we only have sample paths taken by the agent and may not be
able to access the full policy. We make this assumption only to keep the
notation simple. Methods used in practice rely only on trajectories taken
by agents.

For similar reasons, we will also assume that the one-stage rewards are

independent of the action taken and hence try to find g(x) instead.

Lecture 23 Inverse Reinforcement Learning

10/37

Inverse Reinforcement Learning
Overview

The idea behind inverse RL is simple. Since µ∗ is optimal according to
the expert, the reward from using it should be greater than that obtained
from any other policy.

This condition can be translated to a bunch of inequality conditions. The

problem however is that there are many reward functions which satisfy it.

Lecture 23 Inverse Reinforcement Learning

11/37

Inverse Reinforcement Learning
Overview

Mathematically, suppose µ∗ is the policy used by an expert and µ is some
admissible stationary policy. Then, from Bellman equations,

Jµ = TµJµ = g + PµJµ

Thus, Jµ can also be written as (I − Pµ)−1g . Note that since g does not
depend on u, the subscript µ in gµ can be suppressed.

For µ∗ to be optimal, we must therefore have

(I − Pµ∗)
−1g ≥ (I − Pµ)−1g ∀ µ ∈ Π

What is an obvious reward vector which satisfies the above inequalities?

Lecture 23 Inverse Reinforcement Learning

12/37

Inverse Reinforcement Learning
Overview

In order to address the uniqueness issue, a secondary objective is imposed.
Different studies have used different objectives depending on the applica-
tion. Examples include

I Maximum margin methods

I Ng, A. Y., & Russell, S. J. (2000, June). Algorithms for inverse
reinforcement learning. In Proceedings of the 21 International
Conference on Machine Learning (pp. 663-670).

I Ratliff, N. D., Bagnell, J. A., & Zinkevich, M. A. (2006, June).

Maximum margin planning. In Proceedings of the 23rd

International Conference on Machine Learning (pp. 729-736).

I Entropy maximization

I Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2008,

July). Maximum Entropy Inverse Reinforcement Learning. In AAAI

(Vol. 8, pp. 1433-1438).

Lecture 23 Inverse Reinforcement Learning

13/37

Inverse Reinforcement Learning
Maximum Margin Methods

The objective in the maximum margin methods is choose an objective such
that the rewards we discover will make µ∗ a clear winner.

For instance, one option is to maximize the gap between the performance
of µ∗ and the second best policy.

For notational convenience, suppose that the process always starts in a
state i and the expert is optimizing Jµ∗(i). Then, we can write the above
problem as

max
g

min
µ

(
Jµ∗(i)− Jµ(i)

)
s.t. (I − Pµ∗)

−1g(i) ≥ (I − Pµ)−1g(i) ∀µ ∈ Π

This is a linear program. Why?

Lecture 23 Inverse Reinforcement Learning

14/37

Inverse Reinforcement Learning
Maximum Margin Methods

The problem can be rewritten as

max
g

y

s.t. (I − Pµ∗)
−1g(i) ≥ (I − Pµ)−1g(i) ∀µ ∈ Π

y ≤ Jµ∗(i)− Jµ(i) ∀µ ∈ Π

In addition, one can also impose bounds on the magnitudes of the one-step
rewards and also include a penalty term for having large rewards.

The idea behind these additional constraints is to keep the rewards “sim-

ple” and they have been found to perform better in practice.

Lecture 23 Inverse Reinforcement Learning

15/37

Inverse Reinforcement Learning
Maximum Margin Methods

The LP formulation with the new constraints is written as

max
g

y − λ‖g‖1

s.t. (I − Pµ∗)
−1g ≥ (I − Pµ)−1g ∀µ ∈ Π

y ≤ Jµ∗(i)− Jµ(i) ∀µ ∈ Π

|g(x)| ≤ M ∀ x ∈ X

The λ value is a parameter which balances the two objectives: separating

the optimal policy from the second best solution and keeping the rewards

small.

Lecture 23 Inverse Reinforcement Learning

16/37

Inverse Reinforcement Learning
Maximum Margin Methods

Are there any disadvantages of using the above LP for finding the rewards?

I We can have a large number of variables due to a large state space.

I The number of constraints can exponential since we have an
inequality for every admissible policy µ.

We will address the first using a function approximation and the second

using a simulation/column generation-type approach.

Lecture 23 Inverse Reinforcement Learning

17/37

Inverse Reinforcement Learning
Function Approximation of Rewards

To overcome the issue of large state spaces, we assume that the the re-
ward functions can be represented using a linear architecture similar to
approximations in value space.

Define g(x) = φ(x)Tw where φ(x) ∈ Rm is a feature vector.The goal is
now to find the optimal w∗ which has fewer variables than the original g
vector. Assume that there are n states. As before, define

Φ =


φ1(1) . . . φm(1)
φ1(2) . . . φm(2)

...
...

...
φ1(n) . . . φm(n)


n×m

Then the one-step rewards can be written as

g = Φw

Lecture 23 Inverse Reinforcement Learning

18/37

Inverse Reinforcement Learning
Function Approximation of Rewards

Since the one-step rewards are assumed independent of the actions, the
value functions can be written as

Jµ = gTϑµ

where ϑµ is the discounted limiting distribution over the state space on
the Markov chain induced by µ. Mathematically,

ϑµ(x) =
∞∑
k=0

αkPµ[xk = x |x0 = i]

If α = 1, this is simply the limiting distribution.

Lecture 23 Inverse Reinforcement Learning

19/37

Inverse Reinforcement Learning
Function Approximation of Rewards

Recall that the constraint Jµ∗(i) ≥ Jµ(i) in the earlier LP ensured that µ∗

is optimal.

Writing J in terms of the discounted limiting distribution and using the
linear architecture for g ’s,

gTϑµ∗ ≥ gTϑµ

⇒ (Φw)Tϑµ∗ ≥ (Φw)Tϑµ

⇒wTΦTϑµ∗ ≥ wTΦTϑµ

The term ΦTϑµ ∈ Rm is called the feature expectation vector. Let us
denote it using ϕµ. Therefore, the above expression becomes

wTϕµ∗ ≥ wTϕµ

Lecture 23 Inverse Reinforcement Learning

20/37

Inverse Reinforcement Learning
Feature Expectations

The reason ϕµ is called the feature expectation is that the value function
can be written as Jµ(i) = wTϕµ. Expanding the LHS,

Jµ(i) = E
{ ∞∑

k=0

αkg(xk)|x0 = i , µ

}

= E
{ ∞∑

k=0

αkwTφ(xk)|x0 = i , µ

}

= wTE
{ ∞∑

k=0

αkφ(xk)|x0 = i , µ

}
Hence, ϕµ is the expectation of the discounted feature vectors.

ϕµ = E
{ ∞∑

k=0

αkφ(x)|x0 = i , µ

}

Lecture 23 Inverse Reinforcement Learning

21/37

Inverse Reinforcement Learning
Function Approximation of Rewards

Recall that the original LP was

max
g

y

s.t. (I − Pµ∗)
−1g(i) ≥ (I − Pµ)−1g(i) ∀µ ∈ Π

y ≤ Jµ∗(i)− Jµ(i) ∀µ ∈ Π

Using the function approximation of g , we can thus reformulate it as

max
w

y

s.t. (I − Pµ∗)
−1φ(i)Tw ≥ (I − Pµ)−1φ(i)Tw ∀µ ∈ Π

y ≤ wTϕµ∗ − wTϕµ ∀µ ∈ Π

How many variables and constraints are present in the new LP?

Lecture 23 Inverse Reinforcement Learning

22/37

Inverse Reinforcement Learning
Function Approximation of Rewards

In practice, we cannot construct the constraint set using all policies. Hence,
we can sample from the set of admissible policies.

Another option is to generate them iteratively:

I Suppose we solve the LP by constructing constraints generated by
the set of policies {µ1, µ2, . . . , µk}. Let the optimal weight vector
be w∗k .

I Resolve the MDP with a reward function g(x) = φ(x)Tw∗k and
generate a new policy µk+1 and repeat.

Defining a convergence criteria can be challenging. We will discuss one
possible option later.

Lecture 23 Inverse Reinforcement Learning

23/37

Inverse Reinforcement Learning
Example

Consider the following grid world example in which the objective is to go to
the top right corner. In each step, one can move N, S, E, or W if possible
but with a 30% chance they end up in a random direction.

The optimal policy and the cost function is shown above.

Lecture 23 Inverse Reinforcement Learning

24/37

Inverse Reinforcement Learning
Example

The results of the LP for λ = 0 (left) and λ = 1.05 (right) are shown
below.

Lecture 23 Inverse Reinforcement Learning

25/37

Inverse Reinforcement Learning
Alternate Formulations

There are other formulations for inverse RL which maximize the margin
between the best and the other policies but the extent of separation is
dependent on how different the two policies are. For instance,

min
g ,ξ
‖g‖22 + λξ

s.t. Jµ∗ ≥ Jµ + L(µ, µ∗)− ξ ∀µ ∈ Π

The function L(µ, µ∗) is called the loss function and could be the number

of states in which policies µ and µ∗ prescribe different actions.

Lecture 23 Inverse Reinforcement Learning

26/37

Inverse Reinforcement Learning
Alternate Formulations

We can parameterize the one-step rewards and also use a sampled set of
constraints as done earlier.

However, note that the objective is quadratic, convex, but not differen-
tiable.Subgradient methods have been found to perform better than off-
the-shelf quadratic programming solvers.

Lecture 23 Inverse Reinforcement Learning

27/37

Lecture Outline

Apprenticeship Learning

Lecture 23 Inverse Reinforcement Learning

28/37

Apprenticeship Learning
Introduction

Inverse RL can be used in a supervised/imitation learning setting to mimic
the behavior of an expert.

For instance, an expert may demonstrate how to drive or lift an object and
a robot can first learn the one-step rewards of the expert and then solve
an MDP using these rewards.

In these applications, it is more important to be right about the perfor-

mance of the policy than the actual reward functions.

Lecture 23 Inverse Reinforcement Learning

29/37

Apprenticeship Learning
Assumptions

We suppose that the true reward function of the expert is linear in the
feature vector and is given by

g∗(x) = φ(x)Tw∗

where w∗ ∈ Rm and ‖w∗‖1 ≤ 1. As before, assume an initial state i for
every problem instance.

The objective is to find a policy µ′ that is similar to the one used by the
expert µ∗. Recall that the performance of a policy µ, Jµ(i) = wTϕµ. If
the two policies have similar performance,

wTϕµ′ ≈ wTϕµ∗

Thus, if we can match the feature expectation vectors, we can be assured

that our performance will match that of the expert. The algorithm that

we will discuss will find a µ′ such that |wTϕµ′ − wTϕµ∗ | ≤ ε.

Lecture 23 Inverse Reinforcement Learning

30/37

Apprenticeship Learning
Estimating Feature Expectation Vectors

Recall that give a policy µ, its expected feature vector is defined as

ϕµ = E
{ ∞∑

k=0

αkφ(x)|x0 = i , µ

}

In practice, this expectation is estimated using samples of trajectories

demonstrated by the expert or by a simulator.

Lecture 23 Inverse Reinforcement Learning

31/37

Apprenticeship Learning
Algorithm

The main steps of the algorithm are:

1 Pick some policy µ0. Set k = 1

2 Solve a inverse RL quadratic programming problem

yk = max
y ,w

y

s.t. wTϕµ∗ ≥ wTϕµj + y ∀ j = 0, 1, . . . k − 1

‖w‖2 ≤ 1

3 If yk ≤ ε, terminate.

4 Else, compute a new policy µk that is optimal for the MDP using
rewards g = φ(x)Twk .

5 Estimate ϕk using simulation.

6 k ← k + 1 and go to Step 2.

Lecture 23 Inverse Reinforcement Learning

32/37

Apprenticeship Learning
Algorithm

𝑤1

𝑤2

𝜑𝜇∗

𝜑𝜇0

𝜑𝜇2

𝜑𝜇1

0

0

𝑤1
𝑇𝜑𝜇∗𝑤1

𝑇𝜑𝜇0𝑤1
𝑇𝜑𝜇1 𝑤1

𝑇𝜑𝜇2

𝑤2
𝑇𝜑𝜇0 𝑤2

𝑇𝜑𝜇1𝑤2
𝑇𝜑𝜇2 𝑤2

𝑇𝜑𝜇∗

𝜖

Lecture 23 Inverse Reinforcement Learning

33/37

Apprenticeship Learning
Algorithm

𝜑𝜇∗

𝜑𝜇0

𝜑𝜇0

𝜑𝜇0

𝜑𝜇0

𝜑𝜇1

𝜑𝜇1

𝜑𝜇2

Separating
hyperplanes

Maximum margin
separation

𝜑𝜇∗

𝜑𝜇∗

𝜑𝜇∗

𝜑𝜇∗

𝜑𝜇∗

𝑤0

𝑤1

𝑤2

𝜑𝜇0 𝜑𝜇1

𝜑𝜇0
𝜑𝜇1

𝜑𝜇2

Lecture 23 Inverse Reinforcement Learning

34/37

Apprenticeship Learning
Algorithm

Upon convergence, the algorithm returns a set of policies µ0, µ1, . . . , µK .

As seen in the geometric interpretation, the performance of one of these
policies is close to that used by the expert.

One can use the dual variables of the quadratic program to find this policy
or define a new quadratic program on the convex closure of µ0, µ1, . . . , µK .

min ‖µ∗ − µ‖2
s.t. µ =

∑
k

λkµk∑
k

λk = 1

λk ≥ 0 ∀ k = 0, 1, . . .K

The policy we will finally use will be a mixture in which we use policy µi

with probability λ∗i (optimal solution of the above problem).

Lecture 23 Inverse Reinforcement Learning

35/37

Apprenticeship Learning
Example

This approach has successfully used to mimic driving behaviors on simple
simulators.

The speed of the blue car is assumed to be fixed at 56 mph and is faster
than all the red cars. One can choose to drive on one of the three lanes
and two shoulders (green portions).

The feature vector includes the lane in which the car is currently in, the
left shoulder, right shoulder, distance of the closest car in the current lane.

Lecture 23 Inverse Reinforcement Learning

36/37

Apprenticeship Learning
Example

The some driving behaviors demonstrated by the expert include

I Nice: Avoid collisions and shoulders and prefer driving on the right

I Nasty: Hit as many cars as possible

I Right lane nice: Drive in right lane and go off-road to avoid hitting
other

For more details, checkout the videos posted on

http://www.cs.stanford.edu/~pabbeel/irl/

I Abbeel, P., & Ng, A. Y. (2004, July). Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first International

Conference on Machine Learning.

Lecture 23 Inverse Reinforcement Learning

http://www.cs.stanford.edu/~pabbeel/irl/

37/37

Your Moment of Zen

Lecture 23 Inverse Reinforcement Learning

