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Previously on Markov Decision Processes

In such cases, we can write the state as (xk , yk) where xk is affected by uk and
yk is not. Let pi represent the pmf of yk . In such cases, the DP algorithm can
be simplified as

Ĵk(xk) =
m∑
i=1

piJk(xk , i)

Ĵk(xk) =
m∑
i=1

pi min
uk∈Uk (xk )

Ewk

{
gk(xk , uk ,wk) + Ĵk+1(fk(xk , uk ,wk))|yk = i

}
In the case of Tetris, xk is the board configuration and yk is the shape of the
block. There is no exogenous disturbance and the action uniquely determines
the new state. Hence, we can write

Jk(xk) =
m∑
i=1

pi min
uk∈Uk (xk )

{
gk(xk , i , uk) + Jk+1(fk(xk , i , uk))

}
fk represents the new board position and gk could be the number of rows cleared.
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Previously on Markov Decision Processes

Specifically, we use any class of stochastic policies which guarantee that ∇θµθ
is differentiable and belongs to (0, 1).

A standard way to encode such stochastic poli-
cies is to use a softmax policy. Imagine
f (i , u; θ) denotes some kind of numerical pref-
erence/utility of u over all the other u′ ∈ U(i).
The softmax policy is defined as

µθ(i , u) =
exp

(
f (i , u; θ)

)∑
u′ exp

(
f (i , u; θ)

)
This is identical to the multinomial logit model! We also explicilty parameterize
f (i , u; θ) using a linear architecture

f (i , u; θ) = θTψ(i , u)

where ψ(i , u) is a feature vector for state-action pair (i , u).
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Previously on Markov Decision Processes

For instance a vector of features for Tetris could be

I Constant

I Number of lines cleared because of choosing u.

I Difference in column heights before and after taking control u in
state i .

𝜓(𝑖, 𝑢) =
𝑖

𝑢
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Previously on Markov Decision Processes

𝑓 𝑖, 𝑢; 𝜃 = 𝜃𝑇𝜓(𝑖, 𝑢)

𝑖

𝑢
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es

Control

−3 −4

𝜇𝜃(𝑖, 𝑢)

𝑖

𝑢

St
at
es

Control

0.58 0.21−4 0.21

Notice that higher the value of f of an action, the odds of choosing it are
greater.

µθ(i , u) =
exp

(
θTψ(i , u)

)∑
u′ exp

(
θTψ(i , u′)

)
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Previously on Markov Decision Processes

Let us revisit our original problem. We want to find θ to minimize

min
θ∈Rm

Jµθ (x0)

Standard gradient descent approaches involve finding iterates

θk+1 = θk − ηk∇θJµθ (x0)

Expanding Jµθ (x0), in ∇θJµθ (x0),

∇θJµθ (x0) = ∇θEw

{ ∞∑
k=0

g(xk , µ(xk),wk)

}
As before, we can think of replacing the expectation with simulated samples, but
how do we deal with the ∇θ operator that appears before the expectation?

Can we make it look like the expectation of something else? Yes.
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Previously on Markov Decision Processes

The policy gradient theorem guarantees that

∇θJµθ (i) ∝ Ej,v

{
Qµθ (j , v)∇θ lnµθ(j , v)

}
Recall that for the softmax policy,

∇θ lnµθ(j , v) = ψ(j , v)−
∑
v′

µθ(j , v ′)ψ(j , v ′)

To simulate the above expectation, we can use a MC-like method in which we
follow policy µθ for a full sample episode and for the state-action pair visited at
step k, we calculate Gk (the sampled future cost) and ∇θ lnµθ (jk , vk) (using the
above formula) and update θ

θk+1 = θk − ηkGk∇θ lnµθ(jk , vk)
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Lecture Outline
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Lecture Outline

Introduction
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Introduction
Understanding Behavior

So far, we have looked at sequential decision making probelms in which we had
access to the problem data (MDP) or we inferred it from the environment (RL).

In the next two classes, we look at its inverse problem. We observe the actions
taken by an agent and then try to uncover what was going in their mind when
they took those actions.

That is, we assume that they are solving some MDP (knowingly or unknowingly)
and we would like to uncover the input data so that their actions match with
the optimal solutions.

This line of research appears in both behavioral economics as well as RL. Unfor-
tunately, these two fields have been operating in closed communicating classes.

We will look at the econometric version in today’s class and RL approaches in
the next.
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Introduction
Understanding Behavior

Before we step into the dynamic case, we will first discuss static models, in which
decision makers choose among a finite set of alternatives in a single shot.

Each alternative is assumed to provide the decision maker some utility and the
decision maker picks the choice with the highest utility.

In other words, the optimization model run-
ning in the decision makers mind is finding
the max of a bunch of numbers.

Daniel McFadden, who won the 2000 Nobel
in Economics, was instrumental in the de-
velopment of discrete choice theory which is
widely applied in transportation and market-
ing.
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Introduction
Examples of Discrete Choice

Factors/features/attributes that can affect our choice:

I Cast

I Running time

I Genre

I IMDb rating

I Language

I Sequel or not
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Introduction
Examples of Discrete Choice

Factors/features/attributes that can affect our choice:

I Price

I Speaker quality

I Operating System

I Battery Life

I Color

I Weight

Lecture 22 Dynamic Discrete Choice Models



14/42

Introduction
Examples of Discrete Choice

Factors/features/attributes that can affect our choice:

I Price

I Travel time

I Reliability

I Out-of-vehicle time

I Comfort

I Safety
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Introduction
Applications

Choice models are very powerful since they can predict behavior of indi-
viduals when the choice attributes are altered. For example,

I What are the odds with which people will watch a film if the IMDb
rating goes up by 0.5?

I How many products will I sell if I give a 10% discount on my
product?

I What fraction of travelers might shift to buses if fuel prices increase
by |5?
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Lecture Outline

Discrete Choice Theory
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Discrete Choice Theory
Introduction

Discrete choice theory is built on the assumption that decision makers calculate
the utility from different alternatives and choose the one with maximum utility.

But an analyst may not have access to many attributes that individuals consider
when choosing an alternative. For instance, consider the problem of selecting a
mode.

Decision maker’s world:

I Cost

I Time

I Reliability

I Safety

Utility of a mode is some function
f (Cost, Time, Reliability, Safety)

Analyst’s world:

I Cost

I Time

Utility of a mode is some paramet-
ric function u(Cost, Time; β) + ran-
dom component

The random component captures the effect of all unobserved or latent attributes

such as reliability and safety which are difficult to measure.
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Discrete Choice Theory
Introduction

The decision maker solves a deterministic problem of selecting the maxi-
mum utility of a finite number of alternatives.

The analyst on the other hand can only model the decision makers objective
as random variable, and hence can say what is the probability of selecting
a certain alternative.

The goal is to adjust β’s such that the probability of selecting the observed
alternative (i.e., the probability that the analyst was correct) is maximized
or in other words.

The process of tweaking β’s is also called maximum likelihood estimation.

Estimating these parameters will help us understand the effects of different

attributes on the choice probabilities.
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Discrete Choice Theory
Introduction

Attributes/State

Optimization 
Model

Action

Observed attributes 𝜖 Parameters 𝛽

What is the probability 
that this action is optimal?

Decision Maker Analyst

Optimal መ𝛽 which maximizes this probability 

Different optimization models maybe used in different contexts:

I Find the maximum of a bunch of numbers → Static choice models

I Knapsack problems → Multiple discrete-continuous choice models

I Markov Decision Process → Dynamic choice models
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Discrete Choice Theory
Background

We will use slightly different notation for this lecture and let a denote
actions and u represent deterministic component of utility. Suppose the
set of alternatives is A.

The analyst assumes that the utility consists of

I An observable component u(x , a) where a ∈ A which depends on a
vector of attributes/covariates/states x that is known to both the
individual and the analyst.

I A latent component ε(a) which is known to the individual but not
the analyst.

Individuals are assumed to select an alternative a ∈ A which maximizes
u(x , a) + ε(a).
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Discrete Choice Theory
Example

Further, u is supposed to be linearly parameterized and we sometimes write
u(x , a;β) to point out this dependence.

For example, consider two choices of using a Car or taking the Bus. The state
or attribute vector x can be the TTCar or TTBus. The utilities can be written as

u
(
(TTCar,TTBus), Car

)
= β0 + β1TTCar + ε(Car)

u
(
(TTCar,TTBus), Bus

)
= β1TTBus + ε(Bus)

Suppose the individual chose Car. Then the probability that the analyst got it
right is

P
[
u
(
(TTCar,TTBus), Car

)
≥ u

(
(TTCar,TTBus), Bus

)]
= P

[
β0 + β1TTCar + ε(Car) ≥ β1TTBus + ε(Bus)

]
= P

[
ε(Car)− ε(Bus) ≥ −β0 − β1TTCar + β1TTBus

]
There are multiple ways to proceed from here depending on the assumptions

made on the error terms. The simplest option is to suppose that the εs are iid

and type I extreme value or Gumbel distributed.
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Discrete Choice Theory
Gumbel Distribution

The CDF and of a Gumbel random variable is

F (ε) = e−e−µ(ε−η)

where µ is the scale parameter and η is the location parameter.

The reason for using Gumbel is that it is quite close to the normal distribution

and the difference of Gumbel random variables follow logistic distribution, which

has a closed form CDF!
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Discrete Choice Theory
Logit Models

Using the CDF of the logistic distribution, one can show that the probability of
selecting Car is

P[Choosing Car] =
exp u

(
(TTCar,TTBus), Car

)
exp u

(
(TTCar,TTBus), Car

)
+ exp u

(
(TTCar,TTBus), Bus

)
In general, for more any finite number of alternatives the probability with which
an individual will choose alternative a can be written as

P[a|x ] =
exp(u(x , a))∑

a′∈A exp(u(x , a′))

These type of choice models are also called Multinomial Logit models (MNL).

To explicitly represent the dependence on the parameter vector β, we can write

the above notation as P[a|x ;β].
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Discrete Choice Theory
Logit Models

Suppose an individual experiences a travel time of 20 minutes by Car and 30
minutes by Bus. Calculate the probabilities of selecting Car for

I β0 = 0.1, β1 = −0.02

I β0 = 0.2, β1 = −0.01
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Discrete Choice Theory
Maximum Likelihood Estimation

In practice, we would have access to choices made by single individual in differ-
ent contexts or multiple individuals from stated-preference surveys or revealed
preferences (e.g., Amazon).

Thus, we can repeat this exercise for all observations n = 1, . . . ,N, to construct
a likelihood function

L(β) =
N∏

n=1

P[an|xn;β]

This is slightly modified by taking the logarithm on both sides to construct a
log-likelihood function

LL(β) =
N∑

n=1

lnP[an|xn;β]

This objective is maximized to get β’s that match the observed and predicted

choices as closely as possible.
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Discrete Choice Theory
Maximum Likelihood Estimation

The above optimization problem is typically solved using a gradient ascent
method. In general, depending on the assumptions on error terms, the
objective can sometimes be non-concave and we are only guaranteed a
local maxima.

In the earlier example, we did not have a constant in the utility of the bus.
Having that would lead to what is called identification issues. This is very
similar to linear independence of feature vectors.

There are a wide variety of statistical tests to ascertain if the estimates of

coefficients are significant and if an alternate choice modeling framework

gives better fit.
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Discrete Choice Theory
Additional Reading

I Koppelman, F. S., & Bhat, C. (2006). A self instructing course in
mode choice modeling: multinomial and nested logit models.

I Train, K. E. (2009). Discrete choice methods with simulation.
Cambridge university press.
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Lecture Outline

Dynamic Choice Models
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Dynamic Choice Models
Introduction

The examples we saw so far are single shot models in which we select an
option and the decision making process ends there.

However, there are several dynamic decisions humans have been making

without the use of decision support tool.
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Dynamic Choice Models
Examples

I When to replace or repair a machine

I When to retire/switch jobs/purse higher studies

I Buy a certain product now or wait for an upgraded version

I Build or sell property

I Select routes in a stochastic network

I Departure choices during a hurricane

I Sports (batting order, when to substitute?)
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Dynamic Choice Models
Overview

In such instances, just as before, we can use the data to infer how decision
makers weigh different attributes. This is equivalent to inferring the one-
step costs or rewards.

However, since decisions are made over time, we can also uncover their
beliefs (transition probabilities) of how the states might change.

For example, they may assume that the prices of a product would go up
in the next time period according to some parametric function and these
parameters are estimated using the same maximum likelihood estimation
method.

Finally, we can also estimate their discount factors which tells us if they

were myopic or forward looking!

Lecture 22 Dynamic Discrete Choice Models



32/42

Dynamic Choice Models
Notation

We will discuss dynamic models using finite horizon MDPs. Extensions to
the infinite horizon case is straightforward.

Let time be divided into intervals t = 1, 2, . . . ,T . At time step t, the
decision maker is assumed to choose an action at from At after observing
a state vector (xt , εt).

As before, the vector xt is assumed to be observable to the analyst and
the decision maker but εt is known to the decision maker only.

For notational ease, will use v and V to denote value functions and assume
that the state variable is continuous.
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Dynamic Choice Models
Conditional Value Functions

Just like static choice models, the expression for the probability can be
written as follows

P[at |xt ] = P[vt(xt , at) + εt(at) > vt(xt , a
′
t) + εt(a

′
t)∀ a′t ∈ At\{at}]

where vt(xt , at) is the conditional value function, which is a measure of
the utility from choosing at at time t and behaving “optimally” thereafter.

If the errors are iid Gumbel, we can write

P[at |xt ] =
exp (vt(xt , at))∑

a′t∈At
exp (vt(xt , a′t))

The challenge is to compute v ’s. Earlier they just represented some linear
parametric utility functions, but now it has to be calculated by solving an
MDP.
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Dynamic Choice Models
Bellman Equations

The decision maker selects an action after observing a state (xt , εt) in time period
t. Let u denote the one-step utility/reward.

Suppose that Π denotes the set of all admissible policies. Then, the objective of
the decision maker is

max
π∈Π

E
T∑
t=1

αt−1

{
u
(
xt , πt(xt , εt)

)
+ εt

(
πt(xt , εt)

)}
where the expectation is taken over the distributions of x and ε.

The ε’s are assumed to be iid over time periods with a probability density function
g(εt) and the observable component of the state vector x is assumed Markovian
with a probability density f (xt+1|xt , εt , at).

However, for the sake of tractability, it is assumed that f (xt+1|xt , εt , at) =
f (xt+1|xt , at), which is commonly referred to as the conditional independence
assumption. ε’s are similar to uncontrollable state components.
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Dynamic Choice Models
Bellman Equations

The decision maker uses the state (xt , εt) to take an action at time t.
Let Vt(xt , εt) be the associated value function. The Bellman’s optimality
conditions for the individual are as follows

Vt(xt , εt) = max
at∈At

{
u(xt , at) + εt(dt) + αE[Vt+1(xt+1, εt+1)]

}
where E[Vt(xt , εt)] is the expectation taken over the distributions of x and
ε. That is,

E[Vt+1(xt+1, εt+1)] =

∫ (∫
Vt+1(xt+1, εt+1)g(εt+1)dεt+1

)
f (xt+1|xt , at)dxt+1
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Dynamic Choice Models
Bellman Equations

Let the ex-ante value function denoted by V̄t(xt) be defined as follows:

V̄t(xt) =

∫
Vt(xt , εt)g(εt)dεt

From earlier equations, we may write

Vt(xt , εt) = max
at∈At

{
u(xt , at) + εt(at) + α

∫
V̄t+1(xt+1)f (xt+1|xt , at)dxt+1

}
Multiplying both sides with density of ε and integrating,∫

Vt(xt , εt)g(εt)dεt =∫
max
at∈At

{
u(xt , at) + εt(at) + α

∫
V̄t+1(xt+1)f (xt+1|xt , at)

}
g(εt)dεt

V̄t(xt) =

∫
max
at∈At

{
u(xt , at)+εt(at)+α

∫
V̄t+1(xt+1)f (xt+1|xt , at)dxt+1

}
g(εt)dεt
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Dynamic Choice Models
Bellman Equations

Recall that the conditional value function was the utility of choosing an action
and behaving optimally thereafter. Hence, we can write,

vt(xt , at) = u(xt , at) + α

∫
V̄t+1(xt+1)f (xt+1|xt , at)dxt+1

Using the definition of the conditional value function,

V̄t(xt) =

∫
max
at∈At

{
vt(xt , at) + εt(at)

}
g(εt)dεt

= Eε
[

max
at∈At

{
vt(xt , at) + εt(at)

}]

If εs are assumed to be Gumbel distributed, the above expectation has a closed
form solution which is given by

V̄t(xt) = γ + ln
∑
at∈At

exp
(
vt(xt , at)

)
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Dynamic Choice Models
Bellman Equations

The conditional value functions can thus be solved using backward induc-
tion and the following sets of equations.

vt(xt , at) = u(xt , at) + α

∫
V̄t+1(xt+1)f (xt+1|xt , at)dxt+1

V̄t(xt) = γ + ln
∑
at∈At

exp
(
vt(xt , at)

)

The one-step utilities are parameterized linearly using β’s as done in static
models, i.e., we can write u(xt , at) as u(xt , at ;β).

Likewise, the transition beliefs are parametrized by λ. That is, we can

write f (xt+1|xt , at) as f (xt+1|xt , at ;λ).
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Dynamic Choice Models
Maximum Likelihood Estimation

Finally, we can use the time-dependent choice probabilities to define a
likelihood function and maximize it to obtain estimates of the discount
factor and utility functions (and also the transition functions)

Recall,

P[ant |xnt ;α, β, λ] =
exp

(
vnt(xnt , ant ;α, β, λ)

)∑
a′nt∈Ant

exp
(
vnt(xnt , a′nt ;α, β, λ)

)
where n denotes an observation. The objective of the estimation procedure
is to find (α̂, β̂, λ̂) which is a solution to

max
α∈[0,1]

LL(α, β, λ) =
N∑

n=1

T∑
t=1

ln

(
P[ant |xnt ;α, β, λ]

)
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Dynamic Choice Models
Estimation

In order to maximize the likelihood function, one could again use a gradient
ascent algorithm or Newton’s method with approximate Hessian (called
BHHH algorithm).

The steps involved in estimation are as follows

I Start with initial values for the estimates

I Solve the dynamic program using backward induction to obtain the
conditional value functions

I Compute the choice probabilities and the objective

I Compute the gradient vector using another backward pass (This can
be quite challenging)

I Find a descent direction and step size and repeat the above steps.
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Dynamic Choice Models
History

Dynamic discrete choice models were popularized by John Rust (who was a
student of McFadden) in 1987.

Rust used 10 years of monthly data on bus mileage and engine condition that
was meticulously collected by Harold Zurcher, a superindent of maintenance at
the Madison Metropolitan Bus Company.

The sample consisted of 104 buses. The mileage since last replacement was
used as the state variable and the one-step costs included cost of repair and
replacement.

The transition probabilities were parameterized using an exponential distribution.

Additional Reading:

I Rust, J. (1987). Optimal replacement of GMC bus engines: An empirical
model of Harold Zurcher. Econometrica: Journal of the Econometric
Society, 999-1033.

I Rust, J. (1994). Structural estimation of Markov decision processes.
Handbook of econometrics, 4, 3081-3143.
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Your Moment of Zen
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