
CE 273
Markov Decision Processes

Lecture 21

Approximation in Policy Space

Lecture 21 Approximation in Policy Space

2/39

Previously on Markov Decision Processes

We might sometimes be interested in the expected amount of time spent by the
system in different states up to time n (e.g., parking).

Such metrics are called occupancy times. Let V
(n)
j be the number of visits to j

over {0, 1, . . . , n}. Mathematically, occupancy time of j up to time n starting
from i is

m
(n)
ij = E

[
V

(n)
j |X0 = i

]
, ∀ i , j ∈ S , n ≥ 0

The matrix of m
(n)
ij values, also called the occupancy time matrix, is represented

by
M(n) =

[
m

(n)
ij

]
|S|×|S|

The occupancy times matrix can be computed from the transition matrix!

Theorem

Let P0 = I . For a fixed n, M(n) =
n∑

r=0

P r

Lecture 21 Approximation in Policy Space

3/39

Previously on Markov Decision Processes

The D and Q matrices are shown in blue and green respectively.

P =

1 2 3 4 5 6

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 1/4 0 1/2 0 1/4 0
4 0 0 0 0 1 0
5 1/16 1/16 1/4 1/8 1/4 1/4
6 0 1/4 0 0 1/4 1/2

D(n) →

1 2

3 3/4 1/4
4 1/2 1/2
5 1/2 1/2
6 1/4 3/4

P(n) →

1 2 3 4 5 6

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 3/4 1/4 0 0 0 0
4 1/2 1/2 0 0 0 0
5 1/2 1/2 0 0 0 0
6 1/4 3/4 0 0 0 0

Lecture 21 Approximation in Policy Space

4/39

Previously on Markov Decision Processes

Given a policy µ, Jµ was the long run discounted cost of using the policy.

Similarly, we can define Qµ(i , u) as the cost of using control u in state i and
thereafter following policy µ.

The equations for finding Qµ(i , u) parallel that of Jµ but without the minimiza-
tion operator.

Qµ(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + αJµ(j)

)
∀ i = 1, . . . , n, u ∈ U(i)

The earlier expression Jk+1(i) = minu∈U(i) Qk+1(i , u) now becomes

Jµ(j) = Qµ(j , µ(j))

Can you interpret both sides of the the above equation in words?

Lecture 21 Approximation in Policy Space

5/39

Previously on Markov Decision Processes

Suppose for each state i , we extract m features. Let k represent a generic
feature. Then, the vector of approximate value functions can be written
as

J̃ = Φr

where Φ is

Φ =

φ1(1) . . . φm(1)
φ1(2) . . . φm(2)

...
...

...
φ1(n) . . . φm(n)

n×m

r =

r1
r2
...
rm

m×1

The rows of the Φ matrix are features and the columns can be interpreted
as basis functions/vectors.

Thus, we can think of the subspace S = {Φr |r ∈ Rm} as the subspace

spanned by the basis vectors (columns of Φ).

Lecture 21 Approximation in Policy Space

6/39

Previously on Markov Decision Processes

To address these issues, a Monte Carlo simulation method like the one discussed
in the previous class can be used.

Suppose ξ = (ξ1, ξ2, . . . , ξn) is a probability distribution. Then the sum
∑n

i=1 ξiai
can be interpreted as the expectation of a random variable whose support is
a1, . . . , an with a pmf ξ.

A simulation-based approach to compute the above expectation is to sample
from a1, . . . , an according to the distribution ξ and form Monte Carlo averages.

Suppose k = 1, . . . ,K are a set of states (not episodes or state transitions)
sampled according to the distribution ξ, then

n∑
i=1

ξiai ≈
1

K

K∑
k=1

ak

Lecture 21 Approximation in Policy Space

7/39

Previously on Markov Decision Processes

Consider a policy µ. Suppose we simulate S trajectories and each trajectory is
indexed by s. A trajectory s can be written as

i0, µ(i0), i1, µ(i1), . . . , it , µ(it), . . . , it(s)

where it(s) represents the terminal state of trajectory s. Given this trajectory, we
can compute the sample future cost at every time step t = 0, . . . , t(s) as follows

Gt(s) = g(it , µ(it), it+1) + αg(it+1, µ(it+1), it+2) + . . .

+ αt(s)−1−tg(it(s)−1, µ(it(s)−1), it(s))

For every it in the trajectory i0, µ(i0), i1, µ(i1), . . . , it(s), update

numVisits(it)← numVisits(it) + 1

J̃µ(it)← J̃µ(it) +
1

numVisits(it)

(
Gt(s)− J̃µ(it)

)
This method can be generalized as

J̃µ(it)← J̃µ(it) + γ
(
Gt(s)− J̃µ(it)

)
Lecture 21 Approximation in Policy Space

8/39

Previously on Markov Decision Processes

Mathematically, the MC update

J̃µ(it)← J̃µ(it) + γ
(
Gt(s)− J̃µ(it)

)
is transformed to

J̃µ(it)← J̃µ(it) + γ
(
g(it , µ(it), it+1) + αJ̃µ(it+1)− J̃µ(it)

)
This method is also called the TD(0) algorithm, and

I g(it , µ(it), it+1) + αJ̃µ(it+1) is called the TD target

I g(it , µ(it), it+1) + αJ̃µ(it+1)− J̃µ(it) is called the TD error

Lecture 21 Approximation in Policy Space

9/39

Lecture Outline

1 Introduction

2 Policy Gradient

3 Extensions

Lecture 21 Approximation in Policy Space

10/39

Lecture Outline

Introduction

Lecture 21 Approximation in Policy Space

11/39

Introduction
Motivation

So far we have looked at value-based approximations in which

I We parameterize the value function for a given policy and use
‘policy improvement’ and repeat.

I Try to find the value closest to J∗ or Q∗ using Q-learning or ALP.

Alternately, we can parametrize the policy directly and optimize some ob-
jective with respect to the parameters.

This is useful when for instance, threshold policies are optimal or if we

seek a policy that is easier to explain and implement (e.g., (s,S)-policies

for inventory and dynamic pricing for parking and airlines).

Lecture 21 Approximation in Policy Space

12/39

Introduction
Objective

Which objective among discounted, total, average cost problems is most
amenable to such parametric policy optimization approach?

The value function of discounted and total cost problems is dependent on
the initial state.

Jµ(x0) = lim
N→∞

Ew

{ N−1∑
k=0

αkg(xk , µ(xk),wk)

}

One can solve a series of parametric policy optimization problems for each

initial state, but such an exercise is not scaleable.

Lecture 21 Approximation in Policy Space

13/39

Introduction
Objective

For this lecture, we will assume that the system always starts in some initial
state and there is a zero-cost terminal state(s), i.e., it is an episodic MDP
with α = 1.

For reference, think of Tetris which always starts with an empty board and
there are many states at which the game terminates.

Luckily, the results extend to the discounted cost case and average cost

problems but deriving the exact expressions is a bit tedious.

Lecture 21 Approximation in Policy Space

14/39

Introduction
Stochastic Policies

Imagine a state x0 from which the system always starts. We are interested in
minimizing over all admissible policies, the following function

Jµ(x0) = lim
N→∞

Ew

{ N−1∑
k=0

g(xk , µ(xk),wk)

}
When we optimize Jµ(x0) over all possible policies, for finite-state and finite-
action problems, we have a discrete optimization problem with potentially an
exponential number of options.

Suppose, we have a parameterized policy µθ ∈ Rm, then we can write the
objective as minθ∈Rm Jµθ (x0). This is identical to searching for rs instead of the
optimal value functions J. How can we solve this problem?

The problem is now reduced to optimization of a function with respect to fewer

variables (typically unconstrained). So one could use standard gradient methods.

What are some potential issues with this approach?

Lecture 21 Approximation in Policy Space

15/39

Introduction
Stochastic Policies

If the actions are discrete, restrictions must be imposed on θ as well.

I For example, consider an inventory policy which suggests to order
S + iθ, when the state of the system is i .

I If we are dealing with indivisble goods, we cannot let θ be
continuous.

For this reason, we smoothen the objective by considering stochastic poli-

cies instead of deterministic ones.

Lecture 21 Approximation in Policy Space

16/39

Introduction
Stochastic Policies

Specifically, we use any class of stochastic policies which guarantee that
∇θµθ is differentiable and belongs to (0, 1).

But there always exists a deterministic policy which we have been trying
to find? How do we find such a policy using the above method? We
don’t. Since policies are anyways being approximated, we hope to weigh
the optimal ones more.

There are however instances such as POMDPs in which the optimal policies

are stochastic where this method is ideal. For example, rock paper scissors

and Poker. Stochastic policies also help in establishing theoretical results.

Lecture 21 Approximation in Policy Space

17/39

Introduction
Softmax Policies

We modify the notation µ(i) to µ(i , u) to represent the probability of
choosing u when in state i . To denote the dependence on the parameter
θ, we write µθ(i , u).

A standard way to encode such stochastic policies is to use a softmax policy.
Imagine f (i , u; θ) denotes some kind of numerical preference/utility of u
over all the other u′ ∈ U(i). The softmax policy is defined as

µθ(i , u) =
exp

(
f (i , u; θ)

)∑
u′ exp

(
f (i , u; θ)

)
This is identical to the multinomial logit model! We also explicilty param-
eterize f (i , u; θ) using a linear architecture

f (i , u; θ) = θTψ(i , u)

where ψ(i , u) is a feature vector for state-action pair (i , u). Notice that the

order of writing parameters and features is flipped. It is more convenient

this way since we will calculate derivatives.
Lecture 21 Approximation in Policy Space

18/39

Introduction
Softmax Policies

For instance a vector of features for Tetris could be

I Constant

I Number of lines cleared because of choosing u.

I Difference in column heights before and after taking control u in
state i .

𝜓(𝑖, 𝑢) =
𝑖

𝑢

Fe
at

u
re

 V
ec

to
r

St
at
es

Control

Lecture 21 Approximation in Policy Space

19/39

Introduction
Softmax Policies

𝑓 𝑖, 𝑢; 𝜃 = 𝜃𝑇𝜓(𝑖, 𝑢)

𝑖

𝑢

St
at
es

Control

−3 −4

𝜇𝜃(𝑖, 𝑢)

𝑖

𝑢

St
at
es

Control

0.58 0.21−4 0.21

Notice that higher the value of f of an action, the odds of choosing it are

greater.

Lecture 21 Approximation in Policy Space

20/39

Introduction
Softmax Policies

Why not use the negative of the Q-values instead of f ?

I On the outset, it appears that they could be used but the Q-factors have
a definite meaning.

I The one with the lowest value was choosen earlier. But this doesn’t mean
its probability gets driven to 1 in the softmax policy.

I In the earlier example, if the Q-factors were 3, 4 and 4, We should choose
action 1, but softmax places a sizeable weight on the other two options.

I The function f on the other hand can be pushed to large values to make
the probability close to 1 or 0. For example, in the above problem, we
might be able find a θ during the course of optimization for which f takes
values 9999, 1, and 1.

Thus, using f can mimic deterministic policies but Q-factors cannot.

Lecture 21 Approximation in Policy Space

21/39

Introduction
Softmax Policies

Softmax policies are between (0, 1) but are they differentiable?

That is, does the following derivative exist?
∂
∂θ1

µθ(i , u)
∂
∂θ2

µθ(i , u)
...

∂
∂θm

µθ(i , u)

Substituting the preferences in the expression for the softmax distriution,

µθ(i , u) =
exp

(
θTψ(i , u)

)∑
u′ exp

(
θTψ(i , u′)

)
Using the above expression calculate ∇θ lnµθ(i , u)? We will use this later.

Lecture 21 Approximation in Policy Space

22/39

Introduction
Softmax Policies

∇θ lnµθ(i , u) = ∇θ ln
exp

(
θTψ(i , u)

)∑
u′
(

exp θTψ(i , u′)
)

= ∇θ ln exp
(
θTψ(i , u)

)
−∇θ ln

(∑
u′

(
exp θTψ(i , u′)

))
= ψ(i , u)− 1∑

u′
(

exp θTψ(i , u′)
)∇θ(∑

u′

(
exp θTψ(i , u′)

))
= ψ(i , u)− 1∑

u′
(

exp θTψ(i , u′)
)(∑

u′

ψ(i , u′)
(

exp θTψ(i , u′)
))

= ψ(i , u)−
∑
u′

µθ(i , u′)ψ(i , u′)

Lecture 21 Approximation in Policy Space

23/39

Lecture Outline

Policy Gradient

Lecture 21 Approximation in Policy Space

24/39

Policy Gradient
Introduction

Let us revisit our original problem. We want to find θ to minimize

min
θ∈Rm

Jµθ (x0)

Standard gradient descent approaches involve finding iterates

θk+1 = θk − ηk∇θJµθ (x0)

Expanding Jµθ (x0), in ∇θJµθ (x0),

∇θJµθ (x0) = ∇θEw

{ ∞∑
k=0

g(xk , µθ(xk),wk)

}
As before, we can think of replacing the expectation with simulated samples, but
how do we deal with the ∇θ operator that appears before the expectation?

Can we make it look like the expectation of something else? Yes.

Lecture 21 Approximation in Policy Space

25/39

Policy Gradient
Introduction

For brevity, we’ll use i to denote the starting state instead of x0.

Proposition

Let ξj denote the average amount of time spent in state j before terminating.

∇θJµθ (i) ∝
n∑

j=1

ξj
∑

v∈U(j)

Qµθ (j , v)∇θµθ(j , v)

Why is this an expectation? The RHS can be written as

Ej

{ ∑
v∈U(j)

Qµθ (j , v)∇θµθ(j , v)

}
We can evaluate this using simulation, but we still have a sum to take care of.

Ej

{ ∑
v∈U(j)

µθ(j , v)Qµθ (j , v)
∇θµθ(j , v)

µθ(j , v)

}
= Ej,v

{
Qµθ (j , v)

∇θµθ(j , v)

µθ(j , v)

}

= Ej,v

{
Qµθ (j , v)∇θ lnµθ(j , v)

}
Lecture 21 Approximation in Policy Space

26/39

Policy Gradient
Policy Gradient Theorem

Ej,v

{
Qµθ (j , v)∇θ lnµθ(i , u)

}
Given a policy, we know how to simulate its value function Qµθ (j , v) and from
our previous discussion ∇θ lnµθ(i , u) is known in closed form!

Proof.

Recall from the definitions of Q-factors,

Jµ(i) = Qµ(i , µ(i))

Since we are using a stochastic policy µθ,

Jµθ (i) =

{ ∑
u∈U(i)

µθ(i , u)Qµθ (i , u)

}
Differentiating both sides wrt θ,

∇θJµθ (i) =
∑

u∈U(i)

{
Qµθ (i , u)∇θµθ(i , u) + µθ(i , u)∇θQµθ (i , u)

}

Lecture 21 Approximation in Policy Space

27/39

Policy Gradient
Policy Gradient Theorem

Proof.

Again, by definition, Qµ(i , u) =
∑n

j=1 pij(u)
(
g(i , u, j) + Jµ(j)). Hence,

⇒Qµθ (i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + Jµθ (j)

⇒∇θQµθ (i , u) =
n∑

j=1

pij(u)∇θJµθ (j)

Substituting the above expression in the earlier equation,

∇θJµθ (i) =
∑

u∈U(i)

{
Qµθ (i , u)∇θµθ(i , u) + µθ(i , u)

n∑
j=1

pij(u)∇θJµθ (j)

}
The same equation can be used recursively to expand Jµθ .

Lecture 21 Approximation in Policy Space

28/39

Policy Gradient
Policy Gradient Theorem

Proof.

∇θJµθ (i) =
∑

u∈U(i)

{
Qµθ (i , u)∇θµθ(i , u) + µθ(i , u)

n∑
j=1

pij(u)

∑
v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v) + µθ(j , v)

n∑
k=1

pjk(v)Jµθ (k)

}}

Lecture 21 Approximation in Policy Space

29/39

Policy Gradient
Policy Gradient Theorem

Proof.

Let’s recolor this to discover some structure

∇θJµθ (i) =
∑

u∈U(i)

{
Qµθ (i , u)∇θµθ(i , u) + µθ(i , u)

n∑
j=1

pij(u)

∑
v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v) + µθ(j , v)

n∑
k=1

pjk(v)Jµθ (k)

}}
The purple and teal parts can be rewritten as

n∑
j=1

p
(0)
ij (µθ)

∑
v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v)

}
n∑

j=1

∑
u∈U(i)

µθ(i , u)pij(u)
∑

v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v)

}

=
n∑

j=1

p
(1)
ij (µθ)

∑
v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v)

}

Lecture 21 Approximation in Policy Space

30/39

Policy Gradient
Policy Gradient Theorem

Proof.

Generalizing these ideas,

∇θJµθ (i) =
n∑

j=1

∞∑
k=0

p
(k)
ij (µθ)

∑
v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v)

}

=
n∑

j=1

ηj
∑

v∈U(j)

{
Qµθ (j , v)∇θµθ(j , v)

}
where ηj is the expected number of visits to state j over the infinite horizon

starting from i . (Same as m
(∞)
ij that we saw in DTMCs).

The sum on the RHS includes all states including terminal states. η for this
states could be ∞. Is this okay? ηj is proportional to ξj . Hence,

∇θJµθ (i) ∝
n∑

j=1

ξj
∑

v∈U(j)

Qµθ (j , v)∇θµθ(j , v)

�
Why is the proportionality constant not important?

Lecture 21 Approximation in Policy Space

31/39

Policy Gradient
REINFORCE

In summary, θ can be updated using a gradient-descent method

θk+1 = θk − ηk∇θJµθ (x0)

and the policy gradient theorem guarantees that

∇θJµθ (i) ∝ Ej,v

{
Qµθ (j , v)∇θ lnµθ(j , v)

}
Recall that for the softmax policy,

∇θ lnµθ(j , v) = ψ(j , v)−
∑
v′

µθ(j , v ′)ψ(j , v ′)

To simulate the above expectation, we can use a MC-like method in which we
follow policy µθ for a full sample episode and for the state-action pair visited at
step k, we calculate Gk (the sampled future cost) and ∇θ lnµθ (jk , vk) (using the
above formula) and update θ

θk+1 = θk − ηkGk∇θ lnµθ(jk , vk)

Lecture 21 Approximation in Policy Space

32/39

Policy Gradient
REINFORCE

The above algorithm is popularly called REINFORCE. The term∇θ lnµθ(i , u)
is also called the eligibility or score vector.

I Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4), 229-256.

Lecture 21 Approximation in Policy Space

33/39

Lecture Outline

Extensions

Lecture 21 Approximation in Policy Space

34/39

Extensions
Introduction

The policy gradient theorem is theoretically appealing and can be extended
to the discounted and average cost problems. The REINFORCE algorithm
however has a few disadvantages:

I The algorithm may get stuck at a local optima and has all the
drawbacks of gradient descent.

I MC methods introduce large variance and the learning rate is
usually slow.

Lecture 21 Approximation in Policy Space

35/39

Extensions
Options

There have been several improvements to address the issues of vanilla-
policy gradient methods.

I Derivative-free methods:
Start with a guess θ and perturb it to θ + ε and estimate the value
functions of the Markov chains and construct approximations to the
derivative.

I Cross-entropy methods:
The parameters are drawn from a Gaussian distribution and using
simulation the mean and variance of the distribution are adjusted.
Think of them as being similar to mixed-logit models.

I Natural Gradient:
This method is like Newton’s descent where the gradient vector is
adjusted with the inverse of another matrix.

Lecture 21 Approximation in Policy Space

36/39

Extensions
Applications

Policy gradient methods have been widely used in robotics.

References:

I Kohl, N., & Stone, P. (2004, May). Policy gradient reinforcement learning for
fast quadrupedal locomotion. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on (Vol. 3, pp. 2619-2624).
IEEE.

I Kober, J., & Peters, J. R. (2009). Policy search for motor primitives in robotics.

In Advances in neural information processing systems (pp. 849-856).

Lecture 21 Approximation in Policy Space

37/39

Extensions
Applications

I Szita, I., & Lörincz, A. (2006). Learning Tetris using the noisy cross-entropy
method. Neural computation, 18(12), 2936-2941.

I Gabillon, V., Ghavamzadeh, M., & Scherrer, B. (2013). Approximate dynamic
programming finally performs well in the game of Tetris. In Advances in neural
information processing systems (pp. 1754-1762).

Lecture 21 Approximation in Policy Space

38/39

Extensions
Actor-Critic Methods

The REINFORCE algorithm can be modified using a TD(0) method by replacing
Gk with one-step costs and an approximate value function at the future step

θk+1 = θk − ηkGk∇θ lnµθ(jk , vk)

The approximate value function depends on the current policy and hence can be
parameterized and simulated. Specifially, we can define Qµθ (i , u) = φ(i , u)T r ,
where r and θ can be completely different set of features.

(a) Policy Gradient (b) Value Function Approximator

The policy µθ is called the actor who updates θ by policy gradient and the value
function evaluator is called the critic who uses TD methods.

Lecture 21 Approximation in Policy Space

39/39

Your Moment of Zen

Lecture 21 Approximation in Policy Space

