
CE 273
Markov Decision Processes

Lecture 20

Q-learning and Approximate Linear
Programming

Lecture 20 Q-learning and Approximate LP

2/39

Previously on Markov Decision Processes

A very useful value function-like concept in the context of RL is called Q-factors.
Recall that the VI step takes the form

Jk+1(i) = min
u∈U(i)

{ n∑
j=1

pij(u)
(
g(i , u, j) + αJk(j)

)}
∀ i = 1, . . . , n

We define new iterates Qk+1(i , u) ∀ i = 1, . . . , n, u ∈ U(i) such that

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + αJk(j)

)
Thus, we can rewrite VI algorithm as

Jk+1(i) = min
u∈U(i)

Qk+1(i , u) ∀ i = 1, . . . , n

Can the VI algorithm be re-written in terms of the Q values only

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Qk(j , v)

)

Lecture 20 Q-learning and Approximate LP

3/39

Previously on Markov Decision Processes

Notice that Q∗(i , u) =
∑n

j=1 pij(u)
(
g(i , u, j)+αJ∗(j)

)
. Thus, one can interpret

Q∗(i , u) as the value of taking an action u in state i and behaving optimally
thereafter.

Q∗(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Q∗(j , v)

)
The optimal policy at state i is the control which minimizes the RHS in the
following equation.

J∗(i) = min
u∈U(i)

Q∗(i , u)∀ i = 1, . . . , n

In general, given the optimal value functions J∗, to recover the optimal policy,
one has to find µ∗ such that Tµ∗J

∗ = TJ∗.

In that sense, Q-factors are ideal for model-free situations since if an oracle

gave you the optimal Q factors, the optimal policies can be derived without the

knowledge of one-stage costs and transition probabilities!

Lecture 20 Q-learning and Approximate LP

4/39

Previously on Markov Decision Processes

Suppose for each state i , we extract m features. Let k represent a generic
feature. Then, the vector of approximate value functions can be written
as

J̃ = Φr

where Φ is

Φ =

φ1(1) . . . φm(1)
φ1(2) . . . φm(2)

...
...

...
φ1(n) . . . φm(n)

n×m

r =

r1
r2
...
rm

m×1

The rows of the Φ matrix are features and the columns can be interpreted
as basis functions/vectors.

Thus, we can think of the subspace S = {Φr |r ∈ Rm} as the subspace

spanned by the basis vectors (columns of Φ).

Lecture 20 Q-learning and Approximate LP

5/39

Previously on Markov Decision Processes

From the monotonicity lemma,

J ≤ TJ ⇒ J ≤ J∗

Also, from the Bellman equations J∗ = TJ∗. Thus, among all functions J that
satisfy J ≤ TJ, J∗ is the “largest”.

J ≤ TJ

⇒ J(i) ≤ g(i , u) + α

n∑
j=1

pij(u)J(j) ∀ i = 1, . . . , n, u ∈ U(i)

Thus, if we treat J(i)s as the decision variables, these form a linear set of
constraints. Since J∗ must be “largest” component wise, we can think of J∗ as
the solution to the linear program,

max
i

n∑
i=1

aiy(i)

s.t. y(i)− α
n∑

j=1

pij(u)y(j) ≤ g(i , u) ∀ i = 1, . . . , n, u ∈ U(i)

Lecture 20 Q-learning and Approximate LP

6/39

Previously on Markov Decision Processes

𝑦(1)

𝑦(2)

𝑦 1
= 𝑔 1, 𝑢1
+ 𝛼(𝑝11 𝑢1 𝑦 1
+ 𝑝12 𝑢1 𝑦(2))

𝑦 1
= 𝑔 1, 𝑢2
+ 𝛼(𝑝11 𝑢2 𝑦 1
+ 𝑝12 𝑢2 𝑦(2))

𝑦 2
= 𝑔 2, 𝑢1
+ 𝛼(𝑝21 𝑢1 𝑦 1
+ 𝑝22 𝑢1 𝑦(2))

𝑦 2
= 𝑔 2, 𝑢2
+ 𝛼(𝑝21 𝑢2 𝑦 1
+ 𝑝22 𝑢2 𝑦(2))

𝐽∗ = 𝐽∗(1), 𝐽∗(2)

Lecture 20 Q-learning and Approximate LP

7/39

Lecture Outline

1 Q-learning

2 Approximate Linear Programming

Lecture 20 Q-learning and Approximate LP

8/39

Lecture Outline

Q-learning

Lecture 20 Q-learning and Approximate LP

9/39

Q-learning
Introduction

The methods we saw in the last two classes approximate the value functions
associated with a given policy.

One can also directly approximate the true value functions J∗ or Q∗!

In today’s class we will study two such approaches: Q-learning and approx-
imate linear programming.

In fact, Q-learning is not exactly an approximation method since it con-
verges to the exact optimal value functions Q∗, but in the limit.

Lecture 20 Q-learning and Approximate LP

10/39

Q-learning
Introduction

Q-factors are appealing since if we know Q∗ then we can construct the
optimal policy without the knowledge of the one-step costs and transition
probabilities.

However, the VI-like algorithm in terms of the Q-factors is not model free.

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Qk(j , v)

)

Lecture 20 Q-learning and Approximate LP

11/39

Q-learning
Introduction

Earlier, we saw that means of samples x1, . . . , xk can be constructed re-
cursively as follows.

Find iterates µk = 1
k

∑k
k=1 xk in terms of previous µk−1 using

µk = µk−1 +
1

k
(xk − µk−1)

This can be alternately written as

µk =
(

1− 1

k

)
µk−1 +

1

k
xk

We will use this structure in providing a sketch for a VI-like algorithm with

the Q-factors. But first, let’s extend this idea to find the fixed point of a

mapping that involves an expectation.

Lecture 20 Q-learning and Approximate LP

12/39

Q-learning
Stochastic Approximation

Consider a mapping F (x) = Ew [f (x ,w)], where w is a random variable.

If F is a contraction mapping, then we can find the fixed point using a
recursive procedure

xk+1 = F (xk) = Ew [f (xk ,w)]

When calculating the above expectation is prohibitive, we sample values
from the distribution of the random variable w : w1,w2 One approxi-
mate method for estimating xk+1 is

xk+1 = Ew [f (xk ,w)] ≈ 1

k

k∑
t=1

f (xk ,wt)

Notice that we use a fewer samples in the beginning but in the limit,

the accuracy of the sample average increases. How many calculations are

needed to generate xk+1.

Lecture 20 Q-learning and Approximate LP

13/39

Q-learning
Stochastic Approximation

What if instead, xk is replaced with with xt in 1/k
∑k

t=1 f (xk ,wt)? How
many calculations do we need to estimate

xk+1 ≈
1

k

k∑
t=1

f (xt ,wt)

It turns out that the above procedure also converges to the fixed point of
the mapping F ! Since

xk =
1

k − 1

k−1∑
t=1

f (xt ,wt)

the modified iterations can be rewritten as

xk+1 =
(

1− 1

k

)
xk +

1

k
f (xk ,wk)

Therefore, denoting 1
k using γk ,

xk+1 = (1− γk)xk + γk f (xk ,wk)

Lecture 20 Q-learning and Approximate LP

14/39

Q-learning
Algorithm

Let’s apply this idea on the Q-factors. From the Bellman equations

Q∗(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Q∗(j , v)

)
This is a fixed point problem Q∗ = FQ∗ where F is

(FQ)(i , u) =
n∑

j=1

pij(u)

(
g(i , u, j) + α min

v∈U(j)
Q(j , v)

)
= Ej [g(i , u, j) + α min

v∈U(j)
Q(j , v)]

Comparing this with xk+1 = Ew [f (xk ,w)] and xk+1 = (1 − γk)xk +
γk f (xk ,wk), fixed point of F can be found using

Qk+1(i , u) = (1−γk)Qk(i , u)+γk

(
g(i , u, ξ(i , u))+α min

v∈U(ξ(i,u))
Qk(ξ(i , u), v)

)
where ξ(i , u) is a sampled future state when we take action u in state i .

Lecture 20 Q-learning and Approximate LP

15/39

Q-learning
Synchronous Version

One can choose γk to be any sequence as long as
∑

k γk =∞ and γ2k <∞.

The above algorithms is just like VI where the Q-factors in iteration k are
used to update those in iteration k + 1.

The only difference is that these updates do not require any mathematical
model. A simulator of the system is sufficient.

Notice that within each iteration, the updates of the Q-factors must be

performed for all state-action pairs. Hence, this approach is also called

synchronous Q-learning.

Lecture 20 Q-learning and Approximate LP

16/39

Q-learning
Asynchronous Version

On the other hand, in online settings it may not be possible to simulate
future states from every state-action pair.

One can still use these type of updates but all state-action pairs must be
visited infinitely often for convergence.

In order to ensure this property, we start from a state i0 and select an
action u0 randomly. The environment takes us to state i1 and we again
pick u1 randomly and repeat.

This version is called Asynchronous Q-learning and can be expressed as

Q(ik , uk)← (1− γnumVisits(ik ,uk))Q(ik , uk)+

γnumVisits(ik ,uk)

(
g(ik , uk , ik+1) + α min

v∈U(ik+1)
Q(ik+1, v)

)

where γnumVisits(ik ,uk) could be 1/(numVisits(ik , uk)).

Lecture 20 Q-learning and Approximate LP

17/39

Q-learning
Parting Note

The F mapping involving Q-factors is a contraction mapping because one
view the problem as a modified MDP in which states are ordered pairs
(i , u) actions are singletons {u}.

J(i , u) for this problem is same as the Q-factors.

The VI version of the Q-factors were modified to suit a model-free setting.
Why not do the same with J values and save on memory?

The earlier approximation assumed that F (x) is of the form E[f (x ,w)].

The T mapping on the other hand has a minimization outside the expec-

tation (unless all action spaces are singletons).

Lecture 20 Q-learning and Approximate LP

18/39

Lecture Outline

Approximate Linear Programming

Lecture 20 Q-learning and Approximate LP

19/39

Approximate Linear Programming
Introduction

Let us revisit the LP formulation for discounted cost MDPs.

max
i

n∑
i=1

aiJ(i)

s.t. J(i) ≤ g(i , u) + α

n∑
j=1

pij(u)J(j) ∀ i = 1, . . . , n, u ∈ U(i)

A compact representation of this problem is

max aT J

s.t. J ≤ TJ

How many constraints and variables do we have? What if we combine this
formulation with the parametric methods, i.e., replace J with Φr .

max aTΦr

s.t. Φr ≤ TΦr

How many constraints and variables do we have?
Lecture 20 Q-learning and Approximate LP

20/39

Approximate Linear Programming
Introduction

Writing this is an elaborate form

max
i

n∑
i=1

ai (Φr)(i)

s.t. (Φr)(i) ≤ g(i , u) + α
n∑

j=1

pij(u)(Φr)(y) ∀ i = 1, . . . , n, u ∈ U(i)

The number of variables are reduced but the number of constraints remains the
same. Hopefully, not all of them are important.

Solving this model gives us an r̃ using which one can construct a greedy policy

µ̃(i) ∈ arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)(Φr̃)(j)

}
Notice that we aren’t finding the best r for a given policy unlike before but we

are trying to approximate the optimal J∗ directly. Is this new approximate LP

any good?

Lecture 20 Q-learning and Approximate LP

21/39

Approximate Linear Programming
Introduction

Suppose ‖ · ‖1,a denotes the weighted `1-norm, i.e.,

‖J‖1,a =
n∑

i=1

ai |J(i)|

The following proposition shows that the solution to the approx. LP minimizes
a distance measure between the approx. the value function and J∗.

Proposition

A vector r̃ solves
max aTΦr

s.t. Φr ≤ TΦr

if and only if it solves
min ‖J∗ − Φr‖1,a

s.t. Φr ≤ TΦr

However, note that r is not unconstrained, i.e., we cannot choose an approximate

optimal value function from any Φr .

Lecture 20 Q-learning and Approximate LP

22/39

Approximate Linear Programming
Geometric Insight

Geometrically, consider a case where the cost functions are 2 × 1 vectors
and r is a scalar.

𝐽 ≤ 𝑇𝐽

𝐽∗

𝑆 = Φ𝑟 𝑟 ∈ ℝ

Φ ǁ𝑟

Lecture 20 Q-learning and Approximate LP

23/39

Approximate Linear Programming
Theoretical Results

Proof.

Any feasible r to the two optimization problems clearly satisfies Φr ≤ J∗.

The objective of the second formulation can be expanded as

‖J∗ − Φr‖1,a =
∑
i∈S

ai |J∗(i)− (Φr)(i)|

=
∑
i∈S

ai
(
J∗(i)− (Φr)(i)

)
= aTJ∗ − aTΦr

Hence, maximizing aTΦr is equivalent to minimizing ‖J∗ − Φr‖1,a. �

The weight vector a scales the error in the approximation for different states.

Therefore, if the weights are higher for some states, one can expect better ap-

proximations in such regions.

Lecture 20 Q-learning and Approximate LP

24/39

Approximate Linear Programming
Theoretical Results

The analysis so far tells us that solving the ALP is equivalent to minimizing the
distance between the optimal value function and Φr̃ .

But then, when we use policy µ̃, we may experience a cost vector Jµ̃ that’s
different from Φr̃ . (Why?)

So for the LP approximation to be a good method, we must actually be mini-
mizing the distance between J∗ and Jµ̃.

We can be optimistic that the distance between these two vectors is better than
that between J∗ and Φr̃ . (Why?) µ̃ is essentially a rollout policy and empirically
such policies have been found to be do well.

Lecture 20 Q-learning and Approximate LP

25/39

Approximate Linear Programming
Theoretical Results

Proposition

Given a probability distribution a, let (a′)T be another probability distribution
defined as (1− α)aT (I − αPµ̃)−1. Then,

‖Jµ̃ − J∗‖1,a ≤
1

1− α‖Φr̃ − J∗‖1,a′

Hence, if the approximate value function Φr̃ is close to J∗ (which is ensured by
the ALP), the performance of the policy generated by it Jµ̃ is also close to the
value of the optimal policy.

Proof.

Jµ̃ − Φr̃ = (I − αPµ̃)−1gµ̃ − Φr̃

= (I − αPµ̃)−1
(
gµ̃ − (I − αPµ̃)Φr̃

)
= (I − αPµ̃)−1

(
T (Φr̃)− Φr̃

)

Lecture 20 Q-learning and Approximate LP

26/39

Approximate Linear Programming
Theoretical Results

Proof.

From the constraints of the ALP, Φr̃ ≤ T (Φr̃) ≤ J∗. Also, from the optimality
of J∗, we have J∗ ≤ Jµ̃.

‖Jµ̃ − J∗‖1,a = aT (Jµ̃ − J∗)

≤ aT (Jµ̃ − Φr̃)

= aT (I − αPµ̃)−1
(
T (Φr̃)− Φr̃

)
=

1

1− α (1− α)aT (I − αPµ̃)−1
(
T (Φr̃)− Φr̃

)
≤ 1

1− α (a′)T
(
J∗ − Φr̃

)
=

1

1− α‖J
∗ − Φr̃‖1,a′

�

Lecture 20 Q-learning and Approximate LP

27/39

Approximate Linear Programming
Theoretical Results

In the following figure, the approximate cost function Φr̃ appears to be worse
than that obtained by the direct method. (We can’t use the direct method on
J∗ because we cannot simulate its value.)

𝐽 ≤ 𝑇𝐽

𝐽∗

𝑆 = Φ𝑟 𝑟 ∈ ℝ

Φ ǁ𝑟

Φ 𝑟∗

However if the optimal value function lies in/close to the span of the columns

of Φ, then the solution quality of the approximate LP also improves. (Imagine

rotating the subspace anticlockwise.)

Lecture 20 Q-learning and Approximate LP

28/39

Approximate Linear Programming
Theoretical Results

The following proposition claims that if Φr∗ is the maximum norm projection on
S , Φr̃ is not very far compared to the distance between J∗ and Φr∗. Let ‖ · ‖∞
be the `∞ or sup norm.

Proposition

Let e be in the span of the columns of Φ and a be a probability mass function.
Then,

‖J∗ − Φr̃‖1,a ≤
2

1− α min
r
‖J∗ − Φr‖∞

Proof.

Suppose r∗ minimizes the RHS in the above inequality and let
ε = ‖J∗ − Φr∗‖∞. From contraction property of T ,

‖T (Φr∗)− J∗‖∞ ≤ α‖Φr∗ − J∗‖∞ = αε

Therefore, T (Φr∗) ≥ J∗ − αεe. One can also show J∗ ≥ Φr∗ − εe. Recall that
from the constant shift lemma,

T (J − δe) = TJ − αδe

Lecture 20 Q-learning and Approximate LP

29/39

Approximate Linear Programming
Theoretical Results

Proof.
Using the above equations,

T (Φr∗ − δe) = T (Φr∗)− αδe
≥ J∗ − αεe − αδe
≥ Φr∗ − (1 + α)εe − αδe
= Φr∗ − (1 + α)εe − αδe + δe − δe
= Φr∗ + [−(1 + α)ε+ (1− α)δ]e − δe

Since the above inequality is true for all δ, select

δ =
(1 + α)ε

1− α

For this choice of δ, the above equation simplifies to T (Φr∗ − δe) ≥ Φr∗ − δe.
Hence, Φr∗ − δe is a feasible solution to the LP.

∵ e is in the span of the columns of Φ, hence we can always find r̄ that
satisfies Φr̄ = Φr∗ − δe ⇒ ‖Φr∗ − Φr̃‖∞ = δ

Lecture 20 Q-learning and Approximate LP

30/39

Approximate Linear Programming
Theoretical Results

Proof.

Using the triangle inequality,

‖Φr̄ − J∗‖∞ ≤‖J∗ − Φr∗‖∞ + ‖Φr∗ − Φr̄‖∞

=ε+ δ =
2ε

1− α

Since r̃ is optimal to the second reformulated ALP,

‖J∗ − Φr̃‖1,c ≤ ‖J∗ − Φr̄‖1,c
≤ ‖J∗ − Φr̄‖∞

≤ 2ε

1− α

�

The bound we just saw does impose some restrictions by assuming that e is

an element of the span. There are improved bounds which do not require this

assumption.

Lecture 20 Q-learning and Approximate LP

31/39

Approximate Linear Programming
Example 1

Consider a discrete-time queueing model in which at most one individual may
arrive in a period with probability 0.2.

The service probabilities are chosen from {0.2, 0.4, 0.6, 0.8} and g(i , u) = i +
60u3, where the state i is the number of customers in the queue and it can vary
from 0 to 49,999.

The basis functions are assumed φ1(i) = 1, φ2(i) = i , φ3(i) = i2, φ4(i) = i3 and
weights equal ai = (1− ξ)ξi , where ξ is a tuneable parameter.

Lecture 20 Q-learning and Approximate LP

32/39

Approximate Linear Programming
Example 1

Figure: Φr̃ vs. J∗ Figure: Jµ̃ vs. J∗

Lecture 20 Q-learning and Approximate LP

33/39

Approximate Linear Programming
Example 1

Figure: µ̃ vs. µ∗

Lecture 20 Q-learning and Approximate LP

34/39

Approximate Linear Programming
Example 2

Here is another example from the paper which deals with a network of queues.

λs represent arrival probabilities and µs denote service probabilities. The decision
in this problem is whether each queue must be operated or not.

The state x is a vector in R8 and the cost-per-stage is assumed g(x) = |x |.

Lecture 20 Q-learning and Approximate LP

35/39

Approximate Linear Programming
Example 2

Table: Performance of different policies.

Policy Average Cost

ADP with ξ = 0.95 33.37
LONGEST (Serve longest queue) 45.04
FIFO (First-in-first-out) 45.71
LBFS (Last-buffer-first-served) 144.1

Lecture 20 Q-learning and Approximate LP

36/39

Approximate Linear Programming
Random Sampling

In problems with large state spaces, the number of constraints can make ALP
less attractive.

One option to overcome this problem is to randomly sample constraints from
some distribution over state-action pairs (i , u).

Lecture 20 Q-learning and Approximate LP

37/39

Approximate Linear Programming
Random Sampling

There are neat theoretical results that show that the scenario on the right is less
likely and one need not sample an exponential number of constraints to get good
approximations if the distribution for sampling constraints are carefully chosen.

For instance, the following table shows the performance of ALP on Tetris (feature
vector comprises of the 22 elements discussed before) with 2 million constraints
that are sampled from a distribution.

Table: Performance of different policies.

Policy Score

TD-learning 3183
Policy Gradient 5500
LP w/ Bootstrap 4274

Lecture 20 Q-learning and Approximate LP

38/39

Approximate Linear Programming
Additional Reading

References:

I De Farias, D. P., & Van Roy, B. (2003). The linear programming
approach to approximate dynamic programming. Operations research,
51(6), 850-865.

I De Farias, D. P., & Van Roy, B. (2004). On constraint sampling in the
linear programming approach to approximate dynamic programming.
Mathematics of operations research, 29(3), 462-478.

I Farias, V. F., & Van Roy, B. (2006). Tetris: A study of randomized
constraint sampling. In Probabilistic and randomized methods for design
under uncertainty (pp. 189-201). Springer, London.

Lecture 20 Q-learning and Approximate LP

39/39

Your Moment of Zen

Lecture 20 Q-learning and Approximate LP

