
CE 273
Markov Decision Processes

Lecture 18

Approximation in Value Space - Part I

Lecture 18 Approximation in Value Space - Part I



2/39

Previously on Markov Decision Processes

Before we proceed, it is worthwhile to group the methods used in ADP.
However, it is very difficulty to construct a taxonomy since the differences
between various methods are often not pronounced.

Further, a majority of algorithms are heuristics and mix and match ideas
from different solution approaches.

The different techniques that we will discuss in this class can be loosely
be classified as

I Lookahead methods (Lecture 17)

I Approximations in value space (Lectures 18-20)

I Approximations in policy space (Lecture 21)

Lecture 18 Approximation in Value Space - Part I



3/39

Previously on Markov Decision Processes

Approximation in value space is the most popular approach in ADP. The
goal in these methods to find a good approximation to the value function
associated with a policy or the optimal value function.

Most algorithms in this class operate in a policy iteration format. The idea
is to start with some policy µ and approximate Jµ as J̃µ. This is equivalent
to the policy evaluation step in PI.

A policy ‘improvement’ step follows in which a new policy µ′ is constructed
using

µ′(i) ∈ arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J̃µ(j)

}
And this process is repeated. The policy ‘improvement’ step is also referred

to as choosing a greedy policy.

Lecture 18 Approximation in Value Space - Part I



4/39

Previously on Markov Decision Processes

Several methods to approximate value functions of a given policy exist.
Two most commonly used approaches that we will see in this course are

I Simulation-based approximation
Imagine we have a simulator that mimics our system (e.g., an Arena
model of queues). To find J̃µ(i), one could start the system with
state i and calculate the discounted cost of a trajectory and repeat
this to estimate the the true Jµ(i) using sample averages.

I Parametric methods
Another option is to represent the value function in a parameterized
form and shift our attention to calculating the parameters that gives
us the best fit (like regression). These parameters would however be
different for different policies.

Lecture 18 Approximation in Value Space - Part I



5/39

Previously on Markov Decision Processes

A very useful value function-like concept in the context of RL is called Q-factors.
Recall that the VI step takes the form

Jk+1(i) = min
u∈U(i)

{ n∑
j=1

pij(u)
(
g(i , u, j) + αJk(j)

)}
∀ i = 1, . . . , n

We define new iterates Qk+1(i , u) ∀ i = 1, . . . , n, u ∈ U(i) such that

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + αJk(j)

)
Thus, we can rewrite VI algorithm as

Jk+1(i) = min
u∈U(i)

Qk+1(i , u) ∀ i = 1, . . . , n

Can the VI algorithm be re-written in terms of the Q values only

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Qk(j , v)

)

Lecture 18 Approximation in Value Space - Part I



6/39

Previously on Markov Decision Processes

Notice that Q∗(i , u) =
∑n

j=1 pij(u)
(
g(i , u, j) + αJ∗(j)

)
. Thus, one can

interpret Q∗(i , u) as the value of taking an action u in state i and behaving
optimally thereafter.

Q∗(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Q∗(j , v)

)
Similarly, we can define Qµ(i , u) as the cost of using control u in state i
and thereafter following policy µ.

The equations for finding Qµ(i , u) parallel that of Jµ but without the
minimization operator.

Qµ(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + αJµ(j)

)
∀ i = 1, . . . , n, u ∈ U(i)

The earlier expression Jk+1(i) = minu∈U(i) Qk+1(i , u) now becomes

Jµ(j) = Qµ(j , µ(j))

Lecture 18 Approximation in Value Space - Part I



7/39

Previously on Markov Decision Processes

Lookahead methods are approximation techniques in which some optimization is
performed for a small and limited number of iterations/time steps.

For example, suppose we have an approximation J̃ of the optimal value function
J∗. Then a one-step lookahead policy µ′ is defined as

µ′(i) ∈ arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J̃(j)

}
We expect that the lookahead policy µ′ to be a good approximation to the
optimal policy µ∗.

Rollout is essentially a one-step lookahead method where J̃ is replaced with Jµ
where µ is some policy that is easy to construct (say a myopic policy). It is also
called the base policy.

Another way to interpret rollout is that we take the optimal action for one step
assuming that we will revert to the base policy thereafter.

Lecture 18 Approximation in Value Space - Part I



8/39

Lecture Outline

1 Simulation-based Approximation

2 Parametric Methods

Lecture 18 Approximation in Value Space - Part I



9/39

Lecture Outline

Simulation-based Approximation

Lecture 18 Approximation in Value Space - Part I



10/39

Simulation-based Approximation
Introduction

Recall that, given a policy µ, the goal is to find an approximation of J̃µ of
Jµ that can be used in an approximate PI method.

An obvious choice of approximating the value functions is to start from a
state i and follow policy µ and average the sample costs to get an estimate.

As discussed earlier, if we have a simulator, one can start it from different
initial points and estimate the expected discounted cost of using the policy.
Further, this process can be fully parallelized.

When do we stop the simulation of each trajectory? Depends on the
discount factor.

If we have a large state space, the idea of sampling can be combined with

parametric methods that we will discuss later.

Lecture 18 Approximation in Value Space - Part I



11/39

Simulation-based Approximation
Monte Carlo Methods

Such simulation-based approximations are also called Monte Carlo meth-
ods.

There are two closely related issues with the earlier idea:

I Starting from a particular state may not be under our control
(especially in online settings).

I We may never visit some states under some policies.

We will modify the method by just looking at sample trajectories instead
of imposing conditions on the initial state. (This partly addresses the first
issue.)

The second one, is a problem of exploration and it can give poor estimates

for states that are rarely visited. We will address this in the next lecture.

Lecture 18 Approximation in Value Space - Part I



12/39

Simulation-based Approximation
Monte Carlo Methods

The Monte Carlo method simulates trajectories from some initial state (say
the initial board position of a game) and updates the value functions for
all states that are visited in each trajectory.

Since we no longer have a choice on the initial state, we do not know when
to stop despite discounting.

Hence, these methods are applicable only to situations in which trajectories

always terminate (e.g., Optimal stopping problems, Stochastic shortest

paths, Go). Such trajectories are also called episodes.

Lecture 18 Approximation in Value Space - Part I



13/39

Simulation-based Approximation
First-Visit Monte Carlo Method

Consider a policy µ. Suppose we simulate S trajectories and each trajectory is
indexed by s. A trajectory s can be written as

i0, µ(i0), i1, µ(i1), . . . , it , µ(it), . . . , it(s)

where it(s) represents the terminal state of trajectory s. Given this trajectory, we
can compute the sample future cost at every time step t = 0, . . . , t(s) as follows

Gt(s) = g(it , µ(it), it+1) + αg(it+1, µ(it+1), it+2) + . . .

+ αt(s)−1−tg(it(s)−1, µ(it(s)−1), it(s))

Suppose we want to find the approximate value of some state i . Then, we look
at the first occurrence of i in each trajectory and calculate the discounted cost
from that point onward.

This process is repeated for all trajectories and the costs are averaged. This

method is also called First-Visit Monte Carlo Method.

Lecture 18 Approximation in Value Space - Part I



14/39

Simulation-based Approximation
First-Visit Monte Carlo Method

Consider an MDP with four states where state 4 is a terminating state.

Suppose we generate four sample trajectories of the system with a given
policy. The states are shown in blue and costs are in black.

1, 10, 3, 12, 1, 14, 4

2, 13, 3, 17, 2, 13, 3, 12, 1, 10, 3, 10, 4

1, 15, 2, 14, 1, 10, 3, 17, 2, 11, 4

3, 18, 3, 18, 3, 12, 1, 14, 4

Using the First-Visit Monte Carlo Method, find the approximate value func-
tion of a policy which generates the above trajectories and costs. Assume
a discount factor of 0.5.

The sample expected discounted costs of starting from state 1 are 19.5,

15, 26.625, and 14.

Lecture 18 Approximation in Value Space - Part I



15/39

Simulation-based Approximation
Pseudocode

First-Visit Monte Carlo Method

numVisits(i) ← 0 ∀ i = 1, . . . , n
totalCost(i) ← 0 ∀ i = 1, . . . , n
J̃µ ← 0
for s = 1, . . . , S do

for t = 0, 1, . . . , t(s) do
if it has been visited for the first time in s then

totalCost(it)← totalCost(it) + Gt(s)
numVisits(it)← numVisits(it) + 1

end if
end for

end for
J̃µ(i)← totalCost(i)/numVisits(i) ∀ i = 1, . . . , n

Lecture 18 Approximation in Value Space - Part I



16/39

Simulation-based Approximation
Monte Carlo Methods

Convergence of the First-Visit Monte Carlo method follows naturally from
the law of large numbers. The estimates of Jµ are also unbiased but
may have some variance which shrinks to zero as the number of samples
increase.

The earlier method looked at the first occurrence of a state in each sample
trajectory/episode and calculated the total cost from that point.

As seen in the example, the same state can appear multiple times within
a single sample trajectory.

Another commonly used variant, Every-Visit Monte Carlo method, exploits

this feature by considering every visit to a state and averaging the total

Gt(s) value.

Lecture 18 Approximation in Value Space - Part I



17/39

Simulation-based Approximation
Monte Carlo Methods

The approximate value function in the earlier algorithm was constructed only
after observing all the sample trajectories.

Instead, one can also update them incrementally one sample at a time by com-
puting running averages. For example, what is the average of 19.5, 15, 26.625,
and 14?

An alternate way of solving this is

19.5 + 15

2
= 17.25

17.25 +
1

3
(26.625− 17.25) = 20.375

20.375 +
1

4
(14− 20.375) = 18.78

Mathematically, if we want to find the average of x1, . . . , xn, find iterates µk =
1
k

∑k
k=1 xk in terms of previous µk−1 as

µk = µk−1 +
1

k
(xk − µk−1)

Lecture 18 Approximation in Value Space - Part I



18/39

Simulation-based Approximation
Monte Carlo Methods

Thus, one can incrementally update the approximate value functions for each
sample trajectory s.

For every it in the trajectory i0, µ(i0), i1, µ(i1), . . . , it(s), update

numVisits(it)← numVisits(it) + 1

J̃µ(it)← J̃µ(it) +
1

numVisits(it)

(
Gt(s)− J̃µ(it)

)
This method can be generalized as

J̃µ(it)← J̃µ(it) + γ
(
Gt(s)− J̃µ(it)

)
Comparing this with gradient descent methods, γ can be interpreted as a step

size and Gt(s) can be thought of a target. One can let γ shrink to zero over time.

This is ideal for scenarios in which the system dynamics are not time-invariant.

Lecture 18 Approximation in Value Space - Part I



19/39

Simulation-based Approximation
Temporal-Difference Learning

There are two major drawbacks with Monte Carlo methods:

I The sample trajectories have to terminate. But not all problems have this
feature.

I The entire trajectory has to be simulated for each sample to calculate
costs.

The Temporal-Difference (TD) method avoids these issues by updating the value
functions immediately after every transition of the Markov chain.

Instead of using Gt(s) in the MC method, it replaces it with the observed cost

g(it , µ(it), it+1) and the current approximation of the discounted value function

for the future αJ̃µ(it+1).

Lecture 18 Approximation in Value Space - Part I



20/39

Simulation-based Approximation
Temporal-Difference Learning

Mathematically, the MC update

J̃µ(it)← J̃µ(it) + γ
(
Gt(s)− J̃µ(it)

)
is transformed to

J̃µ(it)← J̃µ(it) + γ
(
g(it , µ(it), it+1) + αJ̃µ(it+1)− J̃µ(it)

)

This method is also called the TD(0) algorithm, and

I g(it , µ(it), it+1) + αJ̃µ(it+1) is called the TD target

I g(it , µ(it), it+1) + αJ̃µ(it+1)− J̃µ(it) is called the TD error

Lecture 18 Approximation in Value Space - Part I



21/39

Simulation-based Approximation
Temporal-Difference Learning

Can you imagine how DP, MC, TD updates look using a decision tree
representation?

Lecture 18 Approximation in Value Space - Part I



22/39

Simulation-based Approximation
Temporal-Difference Learning

The TD(0) algorithm exploits the Markov property unlike MC updates and
hence can be applied after each transition.

However, the estimates of the value function are biased since in each up-
date we are using an approximation of the future value function.

But the variance of the estimates are usually lower. (Why?) Empirically,
TD methods are known to perform better than MC methods.

Lecture 18 Approximation in Value Space - Part I



23/39

Simulation-based Approximation
Temporal-Difference Learning

Consider the following example from Sutton and Barto. There are five
states A, . . .E and the square symbols represent terminating states. The
one step transition costs are also indicated in the figure.

𝐵 𝐶 𝐷 𝐸
0 0 0 0 0 1

𝐴

Lecture 18 Approximation in Value Space - Part I



24/39

Simulation-based Approximation
Temporal-Difference Learning

Both MC and TD methods have interesting interpretations which can be
understood from the following example.

Suppose there are two states in an MDP, A and B, and we see the following
episodes for some fixed policy:

I A, 0, B, 0

I B, 1

I B, 1

I B, 1

I B, 1

I B, 1

I B, 1

I B, 0

What are the approximate value functions at A and B?

Lecture 18 Approximation in Value Space - Part I



25/39

Simulation-based Approximation
Temporal-Difference Learning

Thus, MC methods attempt to fit the value functions to the sample means
and minimize the mean squared error.

TD methods on the other hand create a Markov chain by discovering
transitions and costs along the lines of maximum-likelihood estimation
and use it estimate approximate value functions.

𝐴 𝐵
𝑔 = 0

𝑔 = 1

𝑔 = 0

1.0

0.75

0.25

Lecture 18 Approximation in Value Space - Part I



26/39

Simulation-based Approximation
TD(λ)

The target in the TD(0) algorithm was the 1-step cost and an estimate of
the future costs g(it , µ(it), it+1) + αJ̃µ(it+1).

Likewise, we can replace it with the 2-step costs and an estimate of the
future costs after observing two transitions (but the calculations are com-
puted at time t), i.e.,

G
(2)
t (s) = g(it , µ(it), it+1) + αg(it+1, µ(it+1), it+2) + α2J̃µ(it+2)

Similarly, if we observe n transitions, we can define a new target with
n-step costs which looks like

G
(n)
t (s) = g(it , µ(it), it+1) + αg(it+1, µ(it+1), it+2) + . . .+ αnJ̃µ(it+n)

What happens when n → ∞? ∞-step TD is equivalent to the MC

method.

Lecture 18 Approximation in Value Space - Part I



27/39

Simulation-based Approximation
TD(λ)

The n-step TD algorithm can thus be written as

J̃µ(it)← J̃µ(it) + γ
(
G

(n)
t (s)− J̃µ(it)

)

State

Action

…

𝑇𝐷(0)

2 − 𝑠𝑡𝑒𝑝 𝑇𝐷

𝑛 − 𝑠𝑡𝑒𝑝 𝑇𝐷

∞ − 𝑠𝑡𝑒𝑝 𝑇𝐷
(𝑀𝐶) …

…
…

What is a good value of n?

Lecture 18 Approximation in Value Space - Part I



28/39

Simulation-based Approximation
TD(λ)

The following plot shows the performance of the n-step TD method on a
19 state random walk similar to the earlier example.

The x-axis represents γ and the y -axis represents the average RMS error
over all states for the first 10 episodes.

Lecture 18 Approximation in Value Space - Part I



29/39

Simulation-based Approximation
TD(λ)

In the TD(λ) method, we modify the TD target by a weighted sum of all the
n-step costs, using an parameter λ which decays exponentially.

State

Action

…

𝑇𝐷(0)

2 − 𝑠𝑡𝑒𝑝 𝑇𝐷

𝑛 − 𝑠𝑡𝑒𝑝 𝑇𝐷

∞− 𝑠𝑡𝑒𝑝 𝑇𝐷 …

(1 − 𝜆)

1 − 𝜆 𝜆

1 − 𝜆 𝜆𝑛−1

1 − 𝜆 𝜆∞−1

…
…

…
…

Mathematically,

Gλ
t (s) = (1− λ)

∞∑
n=1

λn−1G
(n)
t (s)

This weighted average reduces errors in the estimates of the value functions.

The algorithm TD(λ) gets its name from the parameter λ. It is common to find

algorithms in RL named after the notation used (e.g., Q-learning, SARSA).

Lecture 18 Approximation in Value Space - Part I



30/39

Simulation-based Approximation
TD(λ)

If the sample trajectory terminates, then the weights look as follows:

To compute the n-step costs, one has to wait for n transitions. There are
clever ways of avoiding this using what are called eligibility traces.

A celebrated application of the TD learning methods, particularly TD(λ)
can be found in

I Tesauro, G. (1995). Temporal difference learning and TD-Gammon.
Communications of the ACM, 38(3), 58-68.

Lecture 18 Approximation in Value Space - Part I



31/39

Lecture Outline

Parametric Methods

Lecture 18 Approximation in Value Space - Part I



32/39

Parametric Methods
Introduction

Recall that in parametric methods states are represented using features from an
approximation architecture.

One then determines the relative weights of the features using a parameter vector
r such that J̃µ(i ; r) is close to Jµ(i). The features and weights are usually related
in a linear way.

Extract Features 
Approximate 

Value Functions

𝑖 𝜙(𝑖) 𝜙 𝑖 ′𝑟

Suppose for each state i , we can find a column vector of features φ(i). The
linear approximation architecture can be written as

J̃µ(i ; r) = φ(i)′r , ∀ i = 1, . . . , n

Lecture 18 Approximation in Value Space - Part I



33/39

Parametric Methods
Introduction

Suppose for each state i , we extract m features. Let k represent a generic
feature.

Then, the vector of approximate value functions can be written as

J̃ = Φr

where Φ is

Φ =


φ1(1) . . . φm(1)
φ1(2) . . . φm(2)

...
...

...
φ1(n) . . . φm(n)


n×m

r =


r1
r2
...
rm


m×1

The rows of the Φ matrix are features and the columns can be interpreted
as basis functions/vectors.

Thus, we can think of the subspace S = {Φr |r ∈ Rm} as the subspace

spanned by the basis vectors (columns of Φ).
Lecture 18 Approximation in Value Space - Part I



34/39

Parametric Methods
Types

There are two main methods of finding the ‘best’ parameter vector r :

I Direct
This is a simple function fitting exercise. If we know the true Jµ, we
can minmize the error between the function and its approximation.

I Indirect
In this method we approximate the Bellman equation with what is
called the projected Bellman equation. One way to think about it is
that we are ‘fitting’ equations instead of functions.

Lecture 18 Approximation in Value Space - Part I



35/39

Parametric Methods
Geometric Insight

Suppose we have access to the true value function Jµ. Then, the optimal pa-
rameters can be obtained by solving

min
r∈Rm

‖Jµ − Φr‖

For illustration, it is easier to think of the value functions as vectors rather than
functions. Suppose Jµ is a 2× 1 vector and each state can be represented by 1
parameters.

How does the equation J̃µ = Φr
look and the above minimization
look?

J̃µ =

[
J̃µ(1)

J̃µ(2)

]
=

[
φ1(1)
φ1(2)

]
r1

Is r uniquely determined?

𝐽𝜇

𝑆 = { Φ𝑟 |𝑟 ∈ ℝ𝑠}

ሚ𝐽𝜇

𝜙1 1 , 𝜙1 2

Lecture 18 Approximation in Value Space - Part I



36/39

Parametric Methods
Geometric Insight

Redraw this figure if Jµ and r have dimensions 3×1 and 2×1 respectively.

J̃µ =

J̃µ(1)

J̃µ(2)

J̃µ(3)


=

φ1(1) φ2(1)
φ1(2) φ2(2)
φ1(3) φ2(3)

[r1
r2

]

𝐽𝜇

𝑆 = { Φ𝑟 |𝑟 ∈ ℝ𝑠}

ሚ𝐽𝜇
𝜙1 1 , 𝜙1 2 , 𝜙1(3)

𝜙2 1 , 𝜙2 2 , 𝜙2(3)

Is r uniquely determined?

Lecture 18 Approximation in Value Space - Part I



37/39

Parametric Methods
Geometric Insight

In practice, we do not know Jµ and hence we will have to combine this
method with a simulation-based approach.

This idea is closely related to the MC method we discussed earlier.

Lecture 18 Approximation in Value Space - Part I



38/39

Parametric Methods
Geometric Insight

In the indirect approximation approach, we replace the Bellman equations
Jµ = TµJµ with

Φr = ΠTµ(Φr)

where Π denotes the projection of a point on the subspace S .

𝐽𝜇

𝑆 = { Φ𝑟 |𝑟 ∈ ℝ𝑠}

𝑇𝜇𝑆

Φ𝑟

T𝜇(Φ𝑟)

ΠT𝜇(Φ𝑟)

This approach has connections with the TD(0) method which we will dis-

cuss in detail in the next class.
Lecture 18 Approximation in Value Space - Part I



39/39

Your Moment of Zen

Lecture 18 Approximation in Value Space - Part I


