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Previously on Markov Decision Processes

The DP algorithm is more efficient than a brute force computation for
finite state spaces. To see why, assume that there are n states and m
actions in each state at each time step.

Then a total of nmN expectation calculations must be performed. Each
expectation calculation roughly requires O(n) calculations.

On the other hand, if we were to evaluate all policies we would require
(mn)N calculations.
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Previously on Markov Decision Processes
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Previously on Markov Decision Processes
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Lecture Outline
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Overview
Motivation

As seen earlier, MDPs suffer from the curse of dimensionality because of
potentially large

I State spaces (storing large J and µ may be computationally
prohibitive)

I Action spaces (minimization in VI or searching over policies is time
consuming)

I Disturbance spaces (expectation calculations become difficult)

Can you give an example where each of the above problems might arise?
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Overview
Motivation

The other major issue with MDPs is that it is data intensive. One needs
to know the transition probabilities for all actions and the one-stage costs.
In practice,

I We might not have a mathematical model or it might be too clumsy
to write in closed form. Instead we might have a simulator of the
system (e.g., a complex network of queues).

I We might be making decisions in a completely unknown
environment. These are also called unknown MDPs (e.g., a robot
learning to navigate).

Solution techniques which assume explicit transition probabilities and costs

(or simulate them) are also called Model-based methods while those that

solve unknown MDPs are called Model-free methods.
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Overview
Motivation

For these reasons, practical applications of MDPs were fairly limited till
the 90s.

Increasing data, compute power, and more importantly advancements in
the area of AI and reinforcement learning (RL) have made it more appealing
for solving several problems.

In the next few lectures, we will study a few methods that solve the curse

of dimensionality and unknown MDPs.
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Overview
Terminology

The notation that we’ve been using so far is more common in OR and control
community. Computer scientists who have largely contributed to the develop-
ment of RL like to use slightly different terms. For instance,

I Planning refers to a dynamic program with a mathematical model and
Learning refers to unknown MDPs.

I In PI algorithm, prediction implies policy evaluation and term control is
used for policy improvement.

I Modified PI is also called Generalized PI.

I System is also referred to as environment.

I The DTMC induced by a policy is called Markov reward process.

Be aware of these differences when reading papers on RL.

Lecture 17 Introduction to Approximate Dynamic Programming



11/43

Overview
Terminology

Solution methods in ADP are often also classified as:

I Off-line methods
The idea here is to precompute approximations of the value function
or the policy and use them as lookup tables just as before. The only
difference is that storing the entire function may be difficult and
hence we resort to approximations.

They are ideal for situations in which the time is available for
making decisions at each state is very limited.

I On-line methods
Most of the computation in these problems is done after the state is
observed. In addition, we usually also have time constraints on
choosing an action (e.g., Tetris, Go). It may still use approximations
built from experience.

RL algorithms are also classified as on-policy and off-policy methods. We

will talk about these later.
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Overview
Techniques

We will switch back to the infinite horizon discounted cost MDP for the
discussion on ADP.

Substantial literature on approximate methods for total and average cost
MDPs exists but we will not cover them in this course.

There are many approaches for approximately solving MDPs but not all of
them have sound theoretical properties.

A certain technique may work well for one problem, but may not provide

good solutions for other settings. In that sense, ADP is a bit of an art.
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Overview
Techniques

Before we proceed, it is worthwhile to group the methods used in ADP.
However, it is very difficulty to construct a taxonomy since the differences
between various methods are often not pronounced.

Further, a majority of algorithms are heuristics and mix and match ideas
from different solution approaches.

The different techniques that we will discuss in this class can be loosely
be classified as

I Lookahead methods (Lecture 17)

I Approximations in value space (Lectures 18-20)

I Approximations in policy space (Lecture 21)
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Overview
Lookahead Methods

The first set of methods are called lookahead policies, which are simple
heuristics that involve limited computation.

As the name suggests, they involve optimization only up to a small number
of stages and use some approximate policy or value functions thereafter.

This class of heuristics are also closely related to approximations in value

space and are widely used in game playing. They are ideal when limited

time is available for choosing actions at each state.
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Overview
Approximations in Value Space

This is the most popular approach in ADP. The goal in these methods to
find a good approximation to the value function associated with a policy
or the optimal value function.

Most algorithms in this class operate in a policy iteration format, although
there are value iteration-like algorithms (fitted VI) which we will skip.

The idea is to start with some policy µ and approximate Jµ as J̃µ. This is
equivalent to the policy evaluation step in PI.

A policy ‘improvement’ step follows in which a new policy µ′ is constructed
using

µ′(i) ∈ arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J̃µ(j)

}
And this process is repeated. The policy ‘improvement’ step is also referred

to as choosing a greedy policy.
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Overview
Approximations in Value Space

Several methods to approximate value functions of a given policy exist.
Two most commonly used approaches that we will see in this course are

I Simulation-based approximation
Imagine we have a simulator that mimics our system (e.g., an Arena
model of queues). To find J̃µ(i), one could start the system with
state i and calculate the discounted cost of a trajectory and repeat
this to estimate the the true Jµ(i) using sample averages.

I Parametric methods
Another option is to represent the value function in a parameterized
form and shift our attention to calculating the parameters that gives
us the best fit (like regression). These parameters would however be
different for different policies.

Non-parametric models for approximating value function have also been

shown to work well in the recent past.
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Overview
Approximations in Value Space: Simulation-based Approximation

A variety of techniques (MC methods, TD learning) exist for simulation-based
approximation. For example, one can use multiple one-step simulated transitions
to accurately estimate J̃µ(i).

Alternately, it can directly be used online for a certain ‘training period’ and the
costs incurred can be used to inform the approximate value functions.

However, in online settings the frequency of decisions must be high in order to
get reasonable estimates. (This is not a problem with computer simulations since
we can speed it up.)

Advantages:

I Ideal for parallelization

I Simple versions offer theoretical
guarantees

Disadvantages:

I Some states may not be visited
by the policy

I Problems with large state spaces
require more memory (Why?)

There are ways to address these drawbacks by combining it with other methods.
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Overview
Approximations in Value Space: Parametric Methods

Parametric methods simplify the representation of the value functions and involve
selecting an approximation architecture and then training it.

The approximation architecture selection either involves

I Selecting the shape of the value function:
Is it linear, quadratic, sinusoidal, etc.? Each shape can be characterized
by a small parameter vector r . (Think coefficients of a polynomial.)

I Transforming the state to a lower-dimensional object:
Given a state vector, we can extract ‘features’ which are derived
quantities that might influence decisions. The approximate value function
can be written as a function (usually linear) of the features and a
parameter vector r .

The first technique can also be cast as a lower-dimensional feature representation
problem as we will see shortly.

Once the architecture is chosen, the weights r must be tuned to fit J̃µ(i ; r) to
Jµ(i). One can write r as rµ to be a more precise but we will avoid it for brevity.
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Overview
Approximations in Value Space: Example 1

For example, imagine a traffic queue. Suppose we want to minimize the
overall delay at intersections and are in search of a signal control strategy.

It is likely that as the number of vehicles increases, the cost function
increases.

Thus, one guess is to assume that the cost function is quadratic and write
J̃µ(x ; r) = r0 + r1x + r2x

2 and train the values of r0, r1, and r2 using
simulation.

The original state x can take a large number of values but we have now

reduced the problem to finding just three real numbers.
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Overview
Approximations in Value Space: Example 1

Similar approximation framework can be extended to a network of queues.
Suppose x = (x1, . . . , xN) denotes the vector of queue lengths on different
sections of a road network.

The combined effects of different queue lengths on the total delay can be
possibly written as

J̃µ(x ; r) = r0 +
N∑

k=1

rkxk +
N∑

k=1

N∑
l=1

rklxkxl

As before, the training part of the approximation involves finding rk , where
k = 0, . . . ,N and rkl , where k = 1, . . . ,N and l = 1, . . . ,N.

Thus, instead of dealing with an high-dimensional state space, we reduce
the search space to 1 + N + N2 dimensions.

In this example, given a state vector x , we can think of the features as
1, {xk}Nk=1, {xkxl}Nk,l=1.

Lecture 17 Introduction to Approximate Dynamic Programming



21/43

Overview
Approximations in Value Space: Example 2

Consider the state space of Tetris. For a 10 × 20 board, the number of
states is of the order 2200.

For each state, we may extract features that we think are important. For
example,

I Height of each column

I Difference in heights of successive columns

I Maximum column height

I Number of holes in the wall

I Constant

The number of features is about 22 which is extremely low-dimensional

compared the the dimension of the original state.
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Overview
Approximations in Value Space: Example 2

Thus, for each state i , we can find a column vector φ(i) which gives the
above features. Each feature has an associated tuneable parameter rk , and
a linear approximation architecture looks like

J̃µ(i ; r) = φ(i)′r , ∀ i = 1, . . . , n

Extract Features 
Approximate 

Value Functions

𝑖 𝜙(𝑖) 𝜙 𝑖 ′𝑟
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Overview
Approximations in Value Space: Parametric Methods

Advantages:

I Involves tuning few parameters
and is memory friendly

I Can be combined with other
methods

Disadvantages:

I Highly dependent on choice of
the architecture

I Requires domain knowledge and
insight
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Overview
Approximations in Value Space: Learning Optimal Value Functions

So far, we have discussed how to approximate the value associated with
a policy µ. Alternately, we can try to approximate the optimal value
functions directly.

We will study the following methods in this course:

I Approximate Linear Programming

I Q-learning
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Overview
Approximations in Policy Space

This type of approximation is based on direct search in the space of policies.
Approximations in policy space can also be parametric or non-parametric.

We will look at one method called Policy Gradient in which the policy µ(i , θ) is
parameterized by a vector θ and the search space of the optimal policy is reduced
to the space of θs.

This method is appropriate when one can guess the optimal policy (threshold
or stopping type) or when it would be convenient to implement a parameterized
policy. For example,

I (s, S) policies of inventory can be used for larger systems (such as
redistribution of shared cars/bicycles)

I Dynamic pricing strategies for airlines or parking.

I Suppose the level of water in a reservoir is x , then the output quantity
that has to be released could be µ(x ; θ) = θ0 + θ1x .
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Overview
Other Options

Another major class of ADP methods involve aggregation of states. If one
believes that subset of states are similar in nature, it might make sense to
group them and take the same action at all such states. This is also called
hard aggregation.

Soft aggregation on the other hand refers to a case where a single state
can belong to multiple aggregated states with different probabilities.

Unlike VI, PI, and LPs which work for any MDP, there is no single ADP
method that is suited for all problems.

Domain knowledge and information regarding the availability of a math-
ematical model/simulator, amount of time and compute to make online
decisions, etc. are extremely critical.
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Lecture Outline

Q-factors
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Q-factors
Introduction

A very useful value function-like concept in the context of RL is called Q-factors.
Recall that the VI step takes the form

Jk+1(i) = min
u∈U(i)

{ n∑
j=1

pij(u)
(
g(i , u, j) + αJk(j)

)}
∀ i = 1, . . . , n

Notice that we have now explicitly assumed that the one-step costs are a function
of the future state j and the reason for this will become clear later.

We define new iterates Qk+1(i , u) ∀ i = 1, . . . , n, u ∈ U(i) such that

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + αJk(j)

)

Thus, we can rewrite VI algorithm as

Jk+1(i) = min
u∈U(i)

Qk+1(i , u) ∀ i = 1, . . . , n

Can the VI algorithm be re-written in terms of the Q values only?
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Q-factors
Value Iteration

Replacing Jk(j) in the second equation on the previous slide with

min
v∈U(j)

Qk(j , v)

we get

Qk+1(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Qk(j , v)

)

This method helps in formulating the Q-learning algorithm which we will
revisit later. Does this algorithm take more iterations compared to VI? No.

It however requires more memory as we now have to store a value for each

state-action pair.
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Q-factors
Bellman Equations

The Bellman equations using Q-factors can be written as

J∗(i) = min
u∈U(i)

Q∗(i , u)∀ i = 1, . . . , n

where Q∗ satisfies

Q∗(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + α min

v∈U(j)
Q∗(j , v)

)

Notice that Q∗(i , u) =
∑n

j=1 pij(u)
(
g(i , u, j) + αJ∗(j)

)
. Thus, one can

interpret Q∗(i , u) as the value of taking an action u in state i and behaving

optimally thereafter.
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Q-factors
Bellman Equations

The optimal policy at state i is the control which minimizes the RHS in
the following equation.

J∗(i) = min
u∈U(i)

Q∗(i , u)∀ i = 1, . . . , n

In general, given the optimal value functions J∗, to recover the optimal
policy, one has to find µ∗ such that Tµ∗J

∗ = TJ∗.

In that sense, Q-factors are ideal for model-free situations since if an oracle

gave you the optimal Q factors, the optimal policies can be derived without

the knowledge of one-stage costs and transition probabilities!
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Q-factors
Policy Iteration

Given a policy µ, Jµ was the long-run discounted cost of using the policy.

Similarly, we can define Qµ(i , u) as the cost of using control u in state i
and thereafter following policy µ.

The equations for finding Qµ(i , u) parallel that of Jµ but without the
minimization operator.

Qµ(i , u) =
n∑

j=1

pij(u)
(
g(i , u, j) + αJµ(j)

)
∀ i = 1, . . . , n, u ∈ U(i)

The earlier expression Jk+1(i) = minu∈U(i) Qk+1(i , u) now becomes

Jµ(j) = Qµ(j , µ(j))

Can you interpret both sides of the the above equation in words?
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Q-factors
Policy Iteration

Thus, one can construct a policy iteration algorithm in which a policy µk

is evaluated by solving

Qµk
(i , u) =

n∑
j=1

pij(u)
(
g(i , u, j)+αQµk

(j , µk(j))
)
∀ i = 1, . . . , n, u ∈ U(i)

and the policy improvement is carried out by finding a µk+1 such that

Qµk
(i , µk+1(i)) = min

u∈U(i)
Qµk

(i , u)∀ i = 1, . . . , n
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Lecture Outline

Lookahead Methods
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Lookahead Methods
Introduction

As discussed earlier, lookahead methods are approximation techniques in
which some optimization is performed for a small and limited number of
iterations/time steps.

For example, suppose we have an approximation J̃ of the optimal value
function J∗. Then a one-step lookahead policy µ′ is defined as

µ′(i) ∈ arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J̃(j)

}

We expect that the lookahead policy µ′ to be a good approximation to the
optimal policy µ∗.

How is the above equation different from regular PI? It is like the pol-
icy improvement step but J̃ can be any approximate value function not
necessary J of some policy µ.
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Lookahead Methods
Two-step Lookahead Policies

Likewise we can define a two-step lookahead policy (and in general m-step
lookahead policy in the following way.

Suppose ˜̃J is an approximation of J∗. Then we first define a new function
J̃ using

J̃(i) = min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)˜̃J(i)

}
and construct a policy µ′′ in the same way as before.

µ′′(i) ∈ arg min
u∈U(i)

{
g(i , u) + α

n∑
j=1

pij(u)J̃(j)

}

One way to interpret this technique is that we are solving a finite horizon

DP with 2 stages and terminal cost vector ˜̃J.
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Lookahead Methods
Rollout Methods

In the previous example, how do we know an approximation of the optimal
policy? This might be difficult, but if we have one, we can use a one-step
lookahead policy to improve it.

Rollout is essentially a one-step lookahead method where J̃ is replaced with
Jµ where µ is some policy that is easy to construct (say a myopic policy).
It is also called the base policy.

Thus, rollout is simply one step of policy improvement from some base

policy. Another way to interpret it is that we take the optimal action for

one step assuming that we will revert to the base policy thereafter.
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Lookahead Methods
Rollout Methods

In practice, Jµ may also be difficult to estimate and could be approximated
using the other simulation or parameteric methods that we will discuss.
Rollout heuristics are effective when there is limited time for computation.

Lookahead methods often improve policies since convergence of PI is usu-
ally fast and a single iteration can offer significant improvement. Multistep
rollout can be be similarly designed along the lines of multistep lookahead
methods.

Here’s a demonstration of the algorithm on Solitaire:

I Yan, X., Diaconis, P., Rusmevichientong, P., & Roy, B. V. (2005).
Solitaire: Man versus machine. In Advances in Neural Information
Processing Systems (pp. 1553-1560).
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Lookahead Methods
Rolling Horizon Approach

Consider the m-stage rollout or lookahead policy. Once the policy is ob-
tained, we’ve assumed that it will be continued to be used thereafter.

However, one can perform more policy iterations by estimating an approx-
imation of Jµ′ and reapplying the rollout method.

However, time constraints on calculations may prevent us from doing so.

One option is to use a rolling horizon approach in which the m-stage rollout

policy is used for H periods after which it is updated using another rollout.
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Lookahead Methods
Monte Carlo Tree Search

A more sophisticated version of lookahead methods is Monte Carlo Tree
Search (MCTS) and it has been key to the success of programs such as
AlphaGo.

In traditional rollout, we are evaluating the cost of using an action u in
state i followed by the base policy µ.

This is equivalent to finding Q-factors Q(i , u) and selecting the control
which gives the best Q-value.

As mentioned earlier, evaluating Jµ or Qµ(i , u) is usually done approxi-
mately by simulating trajectories from each state i , taking various actions
u and estimating the total discounted costs.
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Lookahead Methods
Monte Carlo Tree Search

As we construct sample averages of the Q values we may realize that,

I Some controls are inferior compared to others and may not be worth
exploring. (Since their contribution to the sample average may be
minimal.)

I Controls that are promising may be work exploring using a multistep
lookahead framework for a more accurate estimate.

These observations, result in creating a selective depth lookahead tree

over which backward induction-style algorithms are run while evaluating

the cost of the leaf nodes using the base policy and simulation.
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Lookahead Methods
Monte Carlo Tree Search

State

Action

Simulate trajectories using
base policy and estimate
approximate value functions

Selective depth lookahead tree
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Your Moment of Zen
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