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Previously on Markov Decision Processes

Proposition

For any transition matrix P and fundamental matrix H

P∗ = PP∗ = P∗P = P∗P∗

P∗H = HP∗ = 0

P∗ + H = I + PH
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Previously on Markov Decision Processes

Definition

The gain Jµ of a policy µ is defined as

Jµ = P∗µgµ

Definition

The bias hµ of a policy µ is defined as

hµ = Hµgµ

where Hµ = (I − Pµ + P∗µ)−1 − P∗µ and is called the fundamental matrix.

In addition, suppose the associated Markov chain is aperiodic, i.e., if P∗µ =
limN→∞ PN

µ (Case III), then we can interpret hµ as

hµ = lim
N→∞

N∑
k=0

Pk
µ(gµ − Jµ)

a relative cost vector, i.e., the difference of the total cost of µ and the total cost

if one-stage costs were set to Jµ.
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Previously on Markov Decision Processes

Unlike discounted and total cost MDPs, where we could solve a system of
equations for a given policy (and use this in the policy iteration algorithm),
we cannot simply solve

J = PµJ

J + h = gµ + Pµh

to get the average cost of policy µ. (Why?)

If (Jµ, hµ) solves the above system, then (Jµ, hµ + constant) also satisfies
the above system. Hence, there are an infinite number of solutions. We
will call these policy evaluation equations for easy referencing.

In general, it can be shown that all solutions to the above system are of
the form (Jµ, hµ + d), where d = Pµd .

Lecture 16 PI and LP for Average Cost MDPs



5/35

Previously on Markov Decision Processes

The earlier proposition and discussion established that a Blackwell optimal policy
is optimal to the average cost problem.

Further, optimal policies were found to satisfy some equations which are the
necessary conditions for optimality. It can also be shown that they are sufficient.

Proposition

If J ′ and h′ satisfy the following pair of optimality equations

J(i) = min
u∈U(i)

n∑
j=1

pij(u)J(j) ∀ i = 1, . . . , n

J(i) + h(i) = min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . , n

where Ū(i) is the set of controls that attain the minimum in the above
equation. Then, J ′ = J∗ is the optimal average cost vector.

Further, if a stationary policy µ attains the minimum in the above equations,
then it is the optimal policy µ∗.
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Previously on Markov Decision Processes

In summary, if the average cost is independent of the initial state, the following
proposition is true

Proposition

If a scalar λ and a vector h satisfy

λ+ h(i) = min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . n

then λ is the optimal average cost J∗(i) for all i , i.e.,

λ = min
µ

Jµ(i) = J∗(i) ∀ i = 1, . . . , n

Further, if µ∗ attains the minimum in the first expression, then Jµ∗(i) = λ ∀ i .

In shorthand, the first equation can be rewritten as λe + h = Th. Think of this

as being analogous to J∗ = TJ∗ in the discounted world.
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Previously on Markov Decision Processes

Theorem

J∗ = lim
k→∞

1

k
T kh

For unichain MDPs,
hk = T kh − (T kh)(t)e

where t is some arbitrary state. Effectively, we are shifting the entire function
by a constant. But note that the constant varies across iterations.

𝑇𝑘ℎ

𝑖𝑡

(𝑇𝑘ℎ) 𝑡 𝑒ℎ𝑘

The iterates hk remain bounded and the bounds do not depend on k.
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Previously on Markov Decision Processes

The relative value iteration (RVI) works for unichain MDPs which induce aperi-
odic Markov Chains.

Define the span semi-norm of a vector h as

sp(h) = max
i∈X

h(i)−min
i∈X

h(i)

Relative Value Iteration

Fix a tolerance level ε > 0 and select a state t
Select h0 ∈ B(X ) and k ← 0
h1 ← Th0 − (Th0)(t)e
while sp(hk+1 − hk) > ε do

k ← k + 1
hk+1 ← Thk − (Thk)(t)e

end while

Select µ such that

µ(i) ∈ arg min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)hk(j)

}

Lecture 16 PI and LP for Average Cost MDPs



9/35

Lecture Outline

1 Policy Iteration

2 Linear Programming
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Lecture Outline

Policy Iteration
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Policy Iteration
Introduction

A policy iteration algorithm that alternates between policy evaluation and
policy improvement can be used to solve the average cost problem.

Policy iteration works for both unichain and multichain MDPs but the

steps for the latter type of problem are more involved.
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Policy Iteration
Policy Evaluation for Unichain MDPs

Consider a unichain MDP. The MDP associated with any policy thus has
a single closed communicating class and a set of transient states.

Suppose at the kth iteration, we have a policy µk . Then, the policy
evaluation is done by solving the system

λke + hk = Tµk
hk

Note that for unichain MDPs Jk = Pµk
Jk is always satisfied. However, as

noted earlier, the above system does not have a unique solution.

Hence, we select an arbitrary state t and set hk(t) = 0. It can be shown
that this new system

λke + hk = Tµk
hk

hk(t) = 0

has a unique solution and λk corresponds to the gain of the policy µk .
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Policy Iteration
Policy Improvement for Unichain MDPs

Note that a hk that satisfies the above set of equations need not equal hµk ,
which is why we use the subscript k and not µk . (We can however call λk as
λµk .)

Since we know the policy, we could as well compute the gain Jµk = λke and hµk

and use it in the next step but it would require more computation.

Policy improvement is done by finding the controls which optimize Thk , that is,

Tµk+1hk = Thk

The new policy µk+1 is the same for any hk that satisfies the policy evaluation
equation. (Why?)

As before,

I The algorithm is terminated when µk+1 = µk .

I Ties are broken such that µk+1(i) = µk(i) whenever possible.
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Policy Iteration
Pseudocode

Policy Iteration
k ← 0
Pick an initial policy µ0 (say a Greedy policy) and some state t
do

Compute λk and hk by solving i.e., . Policy Evaluation

λke + hk = Tµkhk

hk(t) = 0

Compute a new policy µk+1 that satisfies . Policy Improvement

Tµk+1hk = Thk

k ← k + 1
while µk+1 6= µk

µ∗ ← µk and J∗ ← λke

Set µk+1(i) = µk(i) whenever possible.
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Policy Iteration
Example

Perform two iterations of the PI algorithm for the following example with
two states 1 and 2. Assume that state 1 is the reference state t. Start
with the policy µ0(1) = u1 and µ0(2) = u2.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]
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Policy Iteration
Main Result

Let’s now see why the policy iteration method works.

Proposition

Consider an unichain MDP and a policy µ with gain-bias pair (λµ, hµ).
Suppose µ′ is obtained from Tµ′hµ = Thµ and denote using (λµ′ , hµ′) the
gain-bias pair of µ′. If µ′ 6= µ , the one of the following is true

1 λµ′ < λµ

2 λµ′ = λµ and hµ′(i) ≤ hµ(i) for all i = 1, . . . , n with equality occurring
for states that are recurrent and strict inequality for at least one transient
state.

Proof.

We will only prove λµ′ ≤ λµ. To do so, it is enough to show

P∗µ′(Tµhµ − Tµ′hµ) = (λµ − λµ′)e

(Why?) By construction of µ′, Tµ′hµ = Thµ ≤ Tµhµ. Therefore,
P∗µ′(Tµhµ − Tµ′hµ) ≥ 0.
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Policy Iteration
Main Result

Proof.

P∗µ′(Tµhµ − Tµ′hµ) = (λµ − λµ′)e

Consider the LHS:

P∗µ′(Tµhµ − Tµ′hµ) = P∗µ′

(
Tµhµ −

(
Tµ′hµ′ + (Tµ′hµ − Tµ′hµ′)

))
= P∗µ′

(
λµe + hµ −

(
λµ′e + hµ′ + (Tµ′hµ − Tµ′hµ′)

))
= P∗µ′

(
λµe + hµ −

(
λµ′e + hµ′ + Pµ′(hµ − hµ′)

))
= P∗µ′

(
(λµ − λµ′)e + (I − Pµ′)(hµ − hµ′)

)
= P∗µ′(λµ − λµ′)e + (P∗µ′ − P∗µ′Pµ′)(hµ − hµ′)

= (λµ − λµ′)e + 0

�
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Policy Iteration
Policy Evaluation for Multichain MDPs

For multichain MDPs, the same ideas work but both policy evaluation and
improvement involve more equations.

Recall that the gain and bias of a policy satisfy

J = PµJ

J + h = gµ + Pµh

One cannot solve this system and identify the bias since it is not unique.

Non-uniqueness was an issue even in unichain MDPs, but the choice of
the bias did not matter when we perform policy improvement.

However, that is no longer true for multichain MDPs. At every iteration

k , we need (Jµk
, hµk

) to find an improved policy µk+1!

Lecture 16 PI and LP for Average Cost MDPs
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Policy Iteration
Policy Evaluation for Multichain MDPs

An obvious option to find (Jµk , hµk ) is to estimate P∗µk
and the fundamental

matrix Hµk . But this is computationally expensive. Alternately, the following
result can be used

Proposition

Consider a stationary policy µ with the gain-bias pair (Jµ, hµ). The set of
solutions (J, h, v) to the following equations

J = PµJ

J + h = gµ + Pµh

h + v = Pµv

are of the form (Jµ, hµ,−H2
µgµ + d) where d satisfies d = Pµd .
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Policy Iteration
Policy Improvement for Multichain MDPs

Once we have (Jµk , hµk ), µk+1 is obtained from the following two-stage policy
improvement procedure:

Step 1:
Choose a policy µk+1 which satisfies

Pµk+1Jµk = min
µ

PµJµk

In other words,

µk+1(i) ∈ arg min
u∈U(i)

{ n∑
j=1

pij(u)Jµk (j)

}
while setting µk+1(i) = µk(i) whenever possible. If µk+1 6= µk , then we can

switch to the policy evaluation procedure. Else, go to Step 2.
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Policy Iteration
Policy Improvement for Multichain MDPs

Step 2:
Choose a policy µk+1 which satisfies

Pµk+1Jµk = min
µ

PµJµk

Tµk+1hµk = min
µ∈Π̄

Tµhµk

where Π̄ is the set of policies which attain the minimum in minµ PµJµk . Alter-
nately we can write,

µk+1(i) ∈ arg min
u∈U(i)

{ n∑
j=1

pij(u)Jµk (j)

}

µk+1(i) ∈ arg min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)hµk (j)

}
where Ū(i) is the set of controls are the optima of

∑n
j=1 pij(u)Jµk (j). Again set

µk+1(i) = µk(i) whenever possible.
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Policy Iteration
Main Result

The above policy iteration procedure for multichain MDPs works because
of the following proposition (which is is very similar to what we saw in
unichain MDPs).

Proposition

Let µk be a policy with gain-bias pair (Jµk
, hµk

). Suppose that µk+1 is
obtained from policy improvement step and let (Jµk+1

, hµk+1
) be its

gain-bias pair. If µk+1 6= µk then one of the following is true

1 Jµk+1
(i) ≤ Jµk

(i) for all i = 1, . . . , n with a strict inequality for at
least one state i .

2 Jµk+1
= Jµk

and hµk+1
≤ hµk

for all i = 1, . . . , n with strict inequality
for at least one state i transient under µk+1.
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Lecture Outline

Linear Programming
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Linear Programming
Introduction

Both unichain and multichian MDPs can also be solved using linear pro-
gramming.

We will need the following proposition to set up the LPs

Proposition

Let J and h be vectors which satisfy

J ≤ PµJ

J + h ≤ Tµh

Then, J ≤ Jµ. Further, if equality holds in the first two inequalities,
J = Jµ.
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Linear Programming
Unichain MDPs

Consider the case of unichain MDPs. The optimality conditions can be
written as

λe + h = Th = min
µ

Tµh

Alternately, we can write λe + h ≤ Tµh for all stationary policies µ. And
by setting J = λe, the previous proposition can be used.

Thus, for all functions h and scalars λ that satisfy λe + h ≤ Tµh, λ ≤ λµ
for every stationary policy µ.

𝜆∗ 𝜆𝜇1
𝜆𝜇2

Feasible 𝜆 for LP

Further for the optimal policy µ∗, the optimal average cost λ∗ satisfies
λ∗e + h = Tµ∗h. Thus, λ∗ is the largest λ that satisfies λe + h ≤ Th.
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Linear Programming
Primal Problem

The primal LP for unichain MDPs can thus be written as

maxλ

s.t. λ+ h(i) ≤ g(i , u) +
n∑

j=1

pij(u)h(j) ∀ i = 1, . . . , n, u ∈ U(i)

which in standard form looks like

maxλ

s.t. λ+ h(i)−
n∑

j=1

pij(u)h(j) ≤ g(i , u) ∀ i = 1, . . . , n, u ∈ U(i)
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Linear Programming
Example

Write the primal LP for the following example with two states 1 and 2.

1 2

I U(1) = {u1, u2}
I g(1, u1) = 2, g(1, u2) = 0.5

I p1j(u1) = [3/4 1/4]

I p1j(u2) = [1/4 3/4]

I U(2) = {u1, u2}
I g(2, u1) = 1, g(2, u2) = 3

I p2j(u1) = [3/4 1/4]

I p2j(u2) = [1/4 3/4]
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Linear Programming
Dual Problem

Write the dual of the above LP.

I The number of dual variables equal to the number of constraints in
the primal.

I Since the primal constraints are of the ≤ form, the dual variables
must be ≥ 0.

I Since the primal variables are unconstrained, the dual will have
equality constraints. (How many?)
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Linear Programming
Dual Problem

Define variables z(i , u) where i ∈ X , u ∈ U(i).

min
n∑

i=1

∑
u∈U(i)

g(i , u)z(i , u)

s.t.
∑

u∈U(i)

z(i , u)−
n∑

j=1

∑
u∈U(j)

pji (u)z(j , u) = 0 ∀ i = 1, . . . , n

n∑
i=1

∑
u∈U(i)

z(i , u) = 1

z(i , u) ≥ 0 ∀ u ∈ U(i), i = 1, . . . , n

If you think of
∑

u∈U(i) z(i , u) as a new variable zi , what do the constraints

represent?
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Linear Programming
Constructing Solutions from LPs

The primal problem gives us only the optimal λ. The dual solution on the other
hand can be used to construct the optimal policy as well. (How did we do this
for the discounted problem?)

Let z∗(i , u) be the optimal dual solution. Define for all i ,

U∗(i) = {u ∈ U(i)|z∗(i , u) > 0}

For average cost MDPs, it is not necessary that the above set is a singleton.
Define a new set

C∗ =

{
i
∣∣∣ ∑
u∈U(i)

z∗(i , u) > 0

}
Note that the sets U∗(i) and C∗ are non-empty. (Why?) The following policy
can be shown to be optimal

µ∗(i) =

{
any u ∈ U∗(i) if i ∈ C∗

any u ∈ U(i) if i /∈ C∗

It can also be shown that that the set C∗ is a closed communicating class under

the optimal policy µ∗.

Lecture 16 PI and LP for Average Cost MDPs



31/35

Linear Programming
Multichain MDPs

The earlier proposition can also be used to construct a LP for the multichain
MDP. Recall that we now have two sets of feasible constraints J ≤ PµJ and
J + h ≤ Tµh.

This implies that any pair of vectors (J, h) that satisfies the above system,
J ≤ Jµ.

Feasible Region

𝑖

𝐽(𝑖)
𝐽𝜇1

(𝑖)
𝐽𝜇2

(𝑖)

𝐽𝜇4
(𝑖)

𝐽𝜇3
(𝑖)

Thus, J∗ is the “largest” vector satisfying the two constraints.
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Linear Programming
Primal LP for Multichain MDPs

The primal problem for the multichain MDP can be written as

max
n∑

i=1

aiy(i)

s.t. y(i) ≤
n∑

j=1

pij(u)y(j) ∀ i = 1, . . . , n, u ∈ U(i)

y(i) + h(i) ≤ g(i , u) +
n∑

j=1

pij(u)h(j) ∀ i = 1, . . . , n, u ∈ U(i)

where a is a row vector of strictly positive reals satisfying
∑

i ai = 1.
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Linear Programming
Dual LP for Multichian MDPs

Hence, the dual takes the form

min
n∑

i=1

∑
u∈U(i)

g(i , u)z(i , u)

s.t.
∑

u∈U(i)

z(i , u)−
n∑

j=1

∑
u∈U(j)

pji (u)z(j , u) = 0 ∀ i = 1, . . . , n

∑
u∈U(i)

(
z(i , u) + r(i , u)

)
−

n∑
j=1

∑
u∈U(j)

r(j , u)pji (u) = ai ∀ i = 1, . . . , n

z(i , u) ≥ 0 ∀ u ∈ U(i), i = 1, . . . , n

r(i , u) ≥ 0 ∀ u ∈ U(i), i = 1, . . . , n
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Linear Programming
Dual LP for Multichian MDPs

As before, the optimal policy is constructed by first supposing

C∗ =

{
i
∣∣∣ ∑
u∈U(i)

z∗(i , u) > 0

}

using which, we define

µ∗(i) =

{
any u such that z∗(i , u) > 0 if i ∈ C∗

any u such that r∗(i , u) > 0 if i /∈ C∗
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Your Moment of Zen
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