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Previously on Markov Decision Processes
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Previously on Markov Decision Processes

From the examples, we can see that

I lim
n→∞

P(n) doesn’t always exist

I lim
n→∞

M(n)

n + 1
however always exists and equals lim

n→∞
P(n) when the later

exists. (Why is this intuitively true?)

Case lim
n→∞

P(n) lim
n→∞

M(n)

n + 1
Identical Rows Row Sum = 1

I X X X X
II X X X X
III X X X X
IV X X X X
V X X X X
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Previously on Markov Decision Processes

Now consider the cases where P∗µ is stochastic (Cases III, IV, V).

Recall from the analysis of total cost MDPs,
∑N−1

k=0 Pk
µgµ represents the

cost accumulated after N stages. (We started with the zero cost vector
and used the Tµ operator.)

Thus, the average cost of policy µ is

Jµ = lim
N→∞

1

N

N−1∑
k=0

Pk
µgµ =

(
lim

N→∞

1

N

N−1∑
k=0

Pk
µ

)
gµ = P∗µgµ

Definition

The gain Jµ of a policy µ is defined as

Jµ = P∗µgµ
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Previously on Markov Decision Processes

Definition

The bias hµ of a policy µ is defined as

hµ = Hµgµ

where Hµ = (I − Pµ + P∗µ)−1 − P∗µ and is called the fundamental matrix.

In addition, suppose the associated Markov chain is aperiodic, i.e., if P∗µ =

limN→∞ PN
µ (Case III), then we can interpret hµ as

hµ = lim
N→∞

N∑
k=0

Pk
µ(gµ − Jµ)

a relative cost vector, i.e., the difference of the total cost of µ and the

total cost if one-stage costs were set to Jµ.
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Previously on Markov Decision Processes

Theorem

For any transition matrix P and α ∈ (0, 1),

(I − αP)−1 = (1− α)−1P∗ + H + O(|1− α|)

where O(|1− α|) is an α-dependent matrix such that limα→1 O(|1− α|) = 0
and P∗ and H are given by

P∗ = lim
N→∞

1

N

N−1∑
k=0

Pk

H = (I − P + P∗)−1 − P∗

Lecture 14 Optimal Conditions and Classification



7/32

Previously on Markov Decision Processes

Recall that Jµ = P∗µgµ and hµ = Hµgµ. Multiplying both sides of the Laurent
series expansion with gµ,

Theorem (Laurent Series Expansion)

For a given stationary policy µ with transition matrix Pµ and α ∈ (0, 1),

Jα,µ = (1− α)−1Jµ + hµ + O(|1− α|)

where O(|1− α|) is an α-dependent matrix such that limα→1 O(|1− α|) = 0
and Jµ an hµ represent gain and bias of the policy µ respectively.

Hence, we can write

Jµ = (1− α)Jα,µ − (1− α)hµ + O(|1− α|2)

Thus, we expect that a policy minimizing Jα,µ for α close to 1 will also minimize

the average cost Jµ!
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Lecture Outline

1 Blackwell Optimality

2 Optimality Equations

3 Unichain and Multichain MDPs
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Lecture Outline

Blackwell Optimality
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Blackwell Optimality
Gain and Bias Revisited

Suppose a policy µ induces the following Markov chain on a two-state
MDP.

0 1

0.8 0.6

0.4

0.2

Pµ =

[
0.8 0.2
0.4 0.6

]
gµ =

[
1
2

]

Find the gain-bias pair (Jµ, hµ) for the above policy.

P∗µ =

[
2/3 1/3
2/3 1/3

]
Hµ =

[
0.55 −0.55
−1.11 1.11

]
Thus, the gain and bias are

Jµ =

[
4/3
4/3

]
hµ =

[
−0.55
1.11

]
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Blackwell Optimality
Gain and Bias Revisited

Proposition

For any transition matrix P and fundamental matrix H

P∗ = PP∗ = P∗P = P∗P∗

P∗H = HP∗ = 0

P∗ + H = I + PH

Proof.

Proving the first equality is not difficult but a bit involved and we will skip it in
the interest of time.

From the definition of the fundamental matrix,

H = (I − P + P∗)−1 − P∗

⇒(I − P + P∗)H = I − (I − P + P∗)P∗

⇒(I − P + P∗)H = I − P∗

⇒P∗(I − P + P∗)H = P∗(I − P∗)

⇒P∗H = 0
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Blackwell Optimality
Gain and Bias Revisited

Proof.

Proof of HP∗ = 0 is similar.

From one of the above equations,

(I − P + P∗)H = I − P∗

⇒H − PH = I − P∗

⇒P∗ + H = I + PH

�
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Blackwell Optimality
Gain and Bias Revisited

Using the above proposition, and since Jµ = P∗µgµ and hµ = Hµgµ,

Proposition (Policy Evaluation)

The gain and bias vectors of a policy µ, Jµ and hµ satisfy,

Jµ = PµJµ

Jµ + hµ = gµ + Pµhµ

Proof.

From the previous proposition, P∗µ = PµP
∗
µ. Right-multiplying both sides by

gµ, Jµ = PµJµ.

Also, from the previous proposition, P∗µ + Hµ = I + PµHµ. Again,
right-multiplying both sides by gµ,

Jµ + hµ = gµ + Pµhµ

�
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Blackwell Optimality
Gain and Bias Revisited

In the last class, assuming aperiodicity, we interpreted the bias as the
relative cost or the difference in the total cost of µ and the total cost if
the one-stage costs were Jµ. Let’s see why.

First, since P∗µHµ = 0, P∗µHµgµ = 0 ⇒ P∗µhµ = 0. Second, using a set
of equations from the previous proposition, Jµ + hµ = gµ + Pµhµ,

⇒gµ − Jµ = hµ − Pµhµ

⇒
N∑

k=0

Pk
µ(gµ − Jµ) =

N∑
k=0

Pk
µ(hµ − Pµhµ) = hµ − PN

µ hµ

Taking limits on both sides as N → ∞, PN
µ hµ → P∗µhµ = 0. (Why?)

Therefore,

hµ = lim
N→∞

N∑
k=0

Pk
µ(gµ − Jµ)
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Blackwell Optimality
Gain and Bias Revisited

Unlike discounted and total cost MDPs, where we could solve a system of
equations for a given policy (and use this in the policy iteration algorithm),
we cannot simply solve

J = PµJ

J + h = gµ + Pµh

to get the average cost of policy µ. (Why?)

If (Jµ, hµ) solves the above system, then (Jµ, hµ + constant) also satisfies
the above system. Hence, there are an infinite number of solutions. We
will call these policy evaluation equations for easy referencing.

In general, it can be shown that all solutions to the above system are of

the form (Jµ, hµ + d), where d = Pµd .
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Blackwell Optimality
Definition and Existence

We saw earlier that the average cost of an MDP for a given policy can be
expressed in terms of its discounted cost when the discount factor is close
to 1.

Jµ = lim
α→1

(1− α)Jα,µ

Thus, if we can find an optimal policy that solves the α-discounted problem
for α ≈ 1, we expect it to be optimal to the average cost problem.

But what if one policy is optimal for α = 0.99 and a different one is optimal
for α = 0.9999? How close to 1 should we go?

Definition

A stationary policy µ is said to be Blackwell optimal if it is optimal for all
α-discounted problems with α ∈ (ᾱ, 1), where 0 < ᾱ < 1
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Blackwell Optimality
Definition and Existence

Proposition

A Blackwell optimal policy always exists.

A Blackwell optimal policy is optimal to the average cost problem when we
restrict our attention to stationary policies. It also happens to be optimal
over all non-stationary policies as well!
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Lecture Outline

Optimality Equations
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Optimality Equations
Properties of Blackwell Optimal Policies

Proposition

1 All Blackwell optimal policies have the same gain and bias

2 Let (J∗, h∗) be the gain-bias pair of a Blackwell optimal policy, then

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)J∗(j) ∀ i = 1, . . . , n

Let Ū(i) be the set of controls that attain the minimum in the above
equation.

J∗(i) + h∗(i) = min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)h∗(j)

}
∀ i = 1, . . . , n

If µ∗ is Blackwell optimal, it attains the minimum in the RHS of the
above two equations.
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Optimality Equations
Properties of Blackwell Optimal Policies

Proof.

Proof of 1: Suppose µ and µ′ are Blackwell optimal. Then, Jµ,α = Jµ′,α for all
max{ᾱ, ᾱ′} < α < 1.

Since, Jµ = limα→1(1− α)Jα,µ and Jµ′ = limα→1(1− α)Jα,µ′ , it follows that
Jµ = Jµ′

From the Laurent series expansion, of Jα,µ and Jα,µ′ , setting α→ 1 again, we
get hµ = hµ′ .
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Optimality Equations
Properties of Blackwell Optimal Policies

Proof.

Proof of 2: Let µ∗ be a Blackwell optimal policy. For every stationary policy µ
and α ∈ (ᾱ, 1),

TJα,µ∗ ≤ TµJα,µ∗

gµ∗ + αPµ∗Jα,µ∗ ≤ gµ + αPµJα,µ∗

Using the Laurent series expansion of Jα,µ∗ and the above inequality,

0 ≤ gµ − gµ∗ + α(Pµ − Pµ∗)((1− α)−1J∗ + h∗ + O(|1− α|))

0 ≤ (1− α)(gµ − gµ∗) + α(Pµ − Pµ∗)(J∗ + (1− α)h∗ + O((1− α)2))

Taking limits as α→ 1, Pµ∗J
∗ ≤ PµJ

∗ ⇒ J∗ ≤ PµJ
∗. Hence, we can write

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)J∗(j) ∀ i = 1, . . . , n
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Optimality Equations
Properties of Blackwell Optimal Policies

Proof.

Select any µ such that Pµ∗J
∗ = PµJ

∗ ⇒ J∗ = PµJ
∗, i.e., we are looking at a

policy comprising of controls that attain the minimum in the above expression.
The earlier inequality can thus be written as

0 ≤ gµ − gµ∗ + α(Pµ − Pµ∗)(h∗ + O(|1− α|))

Taking limits as α→ 1,

gµ∗ + Pµ∗h
∗ ≤ gµ + Pµh

∗

Thus, µ∗ minimizes gµ + Pµh
∗ over all µ which satisfy J∗ = PµJ

∗. (This looks
a lot like Th∗ ≤ Tµh

∗.) From the policy evaluation equations,

J∗ + h∗ = gµ∗ + Pµ∗h
∗

Therefore, J∗ + h∗ ≤ gµ + Pµh
∗. In other words,

J∗(i) + h∗(i) = min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)h∗(j)

}
∀ i = 1, . . . , n

�
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Optimality Equations
Sufficient Conditions

The earlier proposition and discussion established that a Blackwell optimal policy
is optimal to the average cost problem.

Further, optimal policies were found to satisfy some equations which are the
necessary conditions for optimality. It can also be shown that they are sufficient.

Proposition

If J ′ and h′ satisfy the following pair of optimality equations

J(i) = min
u∈U(i)

n∑
j=1

pij(u)J(j) ∀ i = 1, . . . , n

J(i) + h(i) = min
u∈Ū(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . , n

where Ū(i) is the set of controls that attain the minimum in the above
equation. Then, J ′ = J∗ is the optimal average cost vector.

Further, if a stationary policy µ attains the minimum in the above equations,
then it is the optimal policy µ∗.
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Optimality Equations
Example

Consider the following two-state MDP. Find the optimal average cost.

1 2

𝑢1
𝑔 1, 𝑢1 = 1

𝑢2
𝑔 1, 𝑢2 = −10

𝑢1
𝑔 2, 𝑢1 = 2

I Guess the optimal solution

I Find the gain and bias of the optimal policy

I Check the necessary conditions

I Solve the sufficient conditions
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Lecture Outline

Unichain and Multichain MDPs
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Unichain and Multichain MDPs
Equal Costs

These optimality equations are analogous to the Bellman equations for dis-
counted MDPs but solving it is a two-stage problem. It holds true irrespective
of the structure of the Markov chains for different policies.

However, for instances in which the underlying Markov chains has a certain
structure, the optimal average cost is equal for all states! This was true in the
opening example.

We will discuss conditions required for this property soon but let us study the
consequence of having equal costs. What happens to

J∗(i) = min
u∈U(i)

n∑
j=1

pij(u)J∗(j) ∀ i = 1, . . . , n

These equations are superfluous. Every u ∈ U(i) satisfies it and hence Ū(i) =
U(i). Denoting J∗(i) = λ, we can thus write the second set of equations as

λ∗ + h∗(i) = min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)h∗(j)

}
∀ i = 1, . . . , n
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Unichain and Multichain MDPs
T and T-mu Operator

We will use the following shorthand notation for the T and Tµ operator,
but will apply them on the bias h instead of J.

Formally, define

(Th)(i) = min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . , n

For a stationary policy µ, define

(Tµh)(i) = g(i , µ(i)) +
n∑

j=1

pij(µ(i))h(j)∀ i = 1, . . . , n

Lecture 14 Optimal Conditions and Classification



28/32

Unichain and Multichain MDPs
Optimality Conditions with Equal Costs

In summary, if the average cost is independent of the initial state, the following
proposition is true

Proposition

If a scalar λ and a vector h satisfy

λ+ h(i) = min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)h(j)

}
∀ i = 1, . . . n

then λ is the optimal average cost J∗(i) for all i , i.e.,

λ = min
µ

Jµ(i) = J∗(i) ∀ i = 1, . . . , n

Further, if µ∗ attains the minimum in the first expression, then Jµ∗(i) = λ ∀ i .

In shorthand, the first equation can be rewritten as λe + h = Th. Think of this
as being analogous to J∗ = TJ∗ in the discounted world.
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Unichain and Multichain MDPs
Evaluating a Policy with Equal Costs

Likewise, we can also evaluate the cost of a stationary policy which has equal
average costs starting from any state using the following result

Proposition

Given a stationary policy µ, if a scalar λµ and a vector h satisfy

λµ + h(i) = g(i , µ(i)) +
n∑

j=1

pij(µ(i))h(j) ∀ i = 1, . . . n

then λµ = Jµ(i) for all i

Using the T notation, this takes the form λµe+h = Tµh. Think of this as being

analogous to Jµ = TµJµ in the discounted world.

Lecture 14 Optimal Conditions and Classification



30/32

Unichain and Multichain MDPs
Classification of MDPs

Consider the easy case in which every stationary policy has a single recur-
rent class.

Does the average cost of such policy µ have equal costs?

Now what if the state space can be divided into C ∪ C, where C is a
recurrent class and C is the set of transient states for every policy?

MDPs which satisfy this property are called Unichain MDPs and the
simplified optimality equations can be used in this case.
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Unichain and Multichain MDPs
Classification of MDPs

MDPs in which at least one policy results in two or more closed communi-
cating classes and a transient class (possibly empty) are called Multichain
MDPs.

The equal costs property does not hold in this case, but it still holds within
each closed communicating class.
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Your Moment of Zen
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