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Previously on Markov Decision Processes

I Accessibility (i → j)
I Communicating (i ↔ j)
I Communicating Class (All states communicate and the set is maximal)
I Closed Communicating Class (‘Blackhole’)
I Irreducibility (The entire DTMC is a ‘blackhole’)
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Previously on Markov Decision Processes

Recall that state spaces of reducible DTMCs can be partitioned as

S = C1 ∪ C2 ∪ . . . ∪ Ck ∪ C

Let us first renumber states such that i ∈ Cr and j ∈ Cs with r < s implies
i < j . Further, i ∈ Cr and j ∈ C implies i < j . Then, the transition matrix can
be written in the following format

P(1) 0 . . . 0 0
0 P(2) . . . 0 0
...

...
. . .

...
...

0 0 . . . P(k) 0
D Q


where P(1), . . . ,P(k) are the transition matrices of the k irreducible classes.

Q is a |C| × |C| sub-stochastic matrix (row sums are ≤ 1, why?) and D is

a |C| × |S\{C}| matrix. We know from earlier analysis limiting distribution of

P(r)(n). Since states in C are transient, one can show that Q(n) → 0.
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Previously on Markov Decision Processes

States 1 and 6 form closed communicating classes.

1 32 4 5 6

1 23 4 5 6

The D and Q matrices are shown in blue and green respectively.

P =

1 2 3 4 5 6


1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 1/4 0 1/2 0 1/4 0
4 0 0 0 0 1 0
5 1/16 1/16 1/4 1/8 1/4 1/4
6 0 1/4 0 0 1/4 1/2
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Previously on Markov Decision Processes

𝐽
𝐽0

𝐽0

𝑇𝐽0

𝑇𝐽0 𝑇2𝐽0
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𝐽∗ = 𝑇𝐽∗

𝐽∗ = 𝑇𝐽∗

Figure: Value Iteration
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Previously on Markov Decision Processes
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Figure: Policy Iteration
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Previously on Markov Decision Processes

Note that the new optimization model has a maximization objective
but we are still minimizing the total expected discounted cost.

𝑖

𝐽(𝑖)
𝐽𝜇1(𝑖) 𝐽𝜇2(𝑖)

𝐽𝜇4(𝑖)

𝐽𝜇3(𝑖)

𝐵(𝑋)
𝐽∗ = 𝑇𝐽∗

𝐽 ≤ 𝑇𝐽

The minimization objective we had earlier was across the set of
policies (a finite set when the states and actions are finite). The LP
on the other hand operates in the space of value functions.
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Lecture Outline

1 Motivation

2 Stochastic Shortest Paths

3 Proper Policies
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Lecture Outline

Motivation
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Motivation
Discount Factors

The discount factor α ensured that the total cost was bounded and also
guaranteed that the value and policy iteration algorithms converge. (How?)

In many problems such as asset management, periodic maintenance, and
inventory control using a discount factor α < 1 makes sense since we can
connect it to interest rates.

However, in several other problems that do not warrant discounting (e.g.,
queuing systems, game playing), you will find it being used primarily be-
cause of the mathematical properties.

It is also seen as a tunable parameter and is tweaked to get good results.
(One can also always set α to 0.9999999999999999999999!)
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Motivation
Discount Factors

Even when costs are not involved, the notion of discounting may hold water
since it is human nature to place more weight on short-term costs/rewards.

But discounting doesn’t always make sense. Let’s see why.
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Motivation
Shortest Path Example I

Consider a deterministic shortest path problem. What is the shortest path
between 1 and 6?

1

4 5

6

2 3

4

8

12

12

8

4

Suppose now travel times/costs are discounted by a factor 0.5. What is

the optimal discounted path?
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Motivation
Shortest Path Example I

Even if travel times were converted to costs using value of time, this doesn’t
represent money that you can hold.

Note that stages are defined by the number of links in different paths and
hence some travel times on some paths can be heavily discounted. This is
however fixable. (How?)

One could still argue that the disutility of one minute of travel is different

when you are closer vs. farther from the destination and the discount

factor may help capture such effects.
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Motivation
Shortest Path Example II

Consider a modified revision shown below.

1

4 5

6

2 3

4

8

12

10

8

4

What are the undiscounted and discounted shortest paths? Assume a

discount factor of 0.5.
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Motivation
Shortest Path Example III

Here’s a more compelling example:

1 3

2

8

2

2

5

With a discount factor of say α = 0.5, it is always optimal to cycle one

more time and we’d never reach the destination!
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Motivation
Remedy

In cases like these, one can instead redefine the objective using the

I Total undiscounted cost (α = 1)

I Average cost per stage

We will first look at total cost problems. However, even with bounded one-
step costs |g(i , u)| < M, it is possible that the objective is unbounded.

So the problem makes sense when there are zero-cost termination stages.
This feature is present in all optimal stopping problems (e.g., selling an
asset, secretary problem) and stochastic shortest paths.

We will use a specific version of stochastic shortest paths as a working

example throughout, but the results hold for any total cost MDP that

satisfies the assumptions we’ll make.

Lecture 11 Infinite Horizon Total Cost MDPs



17/38

Lecture Outline

Stochastic Shortest Paths
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Stochastic Shortest Paths
Introduction

Imagine you are traveling along route A. Say your app informs you of an
incident downstream and suggests an alternate route B.

How can we provide such en route navigation?
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Stochastic Shortest Paths
Introduction

When travel times on links in a network are not deterministic, we can fit
probability distributions from past data.

These distributions can be time-dependent, i.e., they can be different de-
pending on when we arrive at each intermediate node.

For simplicity, assume that they are not. Assume that when we reach a
node in the network, the travel time on the downstream arcs is not known
until we traverse it. What is the optimal policy to go from point A to B?

Just replace travel times with expected travel times and use any shortest

path algorithm.
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Stochastic Shortest Paths
Introduction

However, when we arrive at a node, the levels on congestion on immediate
downstream links is fairly predictable.

We can also update our distributions of what happens two or more hops
later. But for the purpose of illustration, suppose that when we reach a
node, we know the travel times on downstream nodes with certainty.

The travel times on all the other links are still random with known proba-
bility distributions. How would you model this as a total cost MDP?

Lecture 11 Infinite Horizon Total Cost MDPs



21/38

Stochastic Shortest Paths
State and Action Space

Suppose the graph is represented by G = (N,A), where N is the set of nodes
and A is the set of links/arcs.

Upon arriving at a node i , a traveler observes a information vector θ ∈ Θi drawn
with probability qθ informing him or her of the travel time of each link leaving
node i .

𝑖

𝑗

𝑘

𝑙

𝑡𝑖𝑗
𝜃

𝑡𝑖𝑘
𝜃

𝑡𝑖𝑙
𝜃

𝜃 = (𝑡𝑖𝑗
𝜃 , 𝑡𝑖𝑘

𝜃 , 𝑡𝑖𝑙
𝜃)

Thus, the states are tuples (i , θ). Policies are functions µ(i , θ) which tell us

which node to go to next. Note that this is a problem with uncontrollable state

components like Tetris.
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Stochastic Shortest Paths
Value Functions and Policies

Suppose t represents the destination node and let Γ(i) represent the nodes
adjacent to node i . Thus, one can expect the value iteration algorithm to
proceed as

Jk+1(i , θ) = min
j∈Γ(i)

{
tθij +

∑
θ′∈Θj

qθ
′
Jk(j , θ′)

}

and Jk(t, θ) = 0 for all θ ∈ Θt .

Likewise, given a policy µ, we expect the cost of the policy µ to be a
solution to

Jµ(i , θ) = tθi,µ(i,θ) +
∑
θ′∈Θj

qθ
′
Jµ(µ(i , θ), θ′)

and Jµ(t, θ) = 0 for all θ ∈ Θt . Since we have uncontrollable state
components, can you write analogues of these equations using the ex ante
value functions? Do we need any assumptions on µ?
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Stochastic Shortest Paths
Example

What is the optimal policy in the network shown below. The origin and
destination are 1 and 4 respectively.

1 
2 

3 4 

1 

1 

1 

    1  (0.1) 
101 (0.9) 

Consider the policy: Take arc
(3,4) only if its cost is 1, else
return to node 3 via nodes
1 and 2. The expected cost
of the policy can be written
as a arithmetico geometric se-
quence.

3(0.1) + 6(0.9)(0.1) + 9(0.9)2(0.1) + . . . = 30

Cycling occurs here but because of the Markovian assumption (not to be

confused with the cycling example due to discounting). This is also referred

to as the full-reset case.
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Stochastic Shortest Paths
Markov Chain Associated With a Policy

For any given policy, we can construct a Markov chain using the states (i , θ)
where i ∈ N, θ ∈ Θi .

The transition diagram for the previous example looks as follows. Once, we reach
the destination, we remain there forever. Is this Markov Chain reducible/irreducible?

1, [1] 2, [1]

3, [1,101] 3, [1,1] 4, [0]

1

0.9 0.1

1

1
1

We can thus partition the state space into a closed communicating class contain-

ing the state (4, [0]) and a set of transient states (that contains all the remaining

states).
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Stochastic Shortest Paths
Markov Chain Associated With a Policy

The transition matrix can be written as

Pµ =

4, [0] 1, [1] 2, [1] 3, [1, 1] 3, [1, 101]


4, [0] 1 0 0 0 0
1, [1] 0 0 1 0 0
2, [1] 0 0 0 0.1 0.9

3, [1, 1] 1 0 0 0 0
3, [1, 101] 0 1 0 0 0

We will soon redefine the transition matrices of total cost MDPs to include only
the green sub-matrix and evaluate the cost of the policy using (I − Pµ)−1gµ.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 1 0 0
0 0 0.1 0.9
0 0 0 0
1 0 0 0



−1 

1
1
1
1

 =


30
29
1

31


Note that the row sums of these matrices need not sum to 1!
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Stochastic Shortest Paths
Ex ante Value Functions and Policies

We can simplify the problem by defining ex ante value functions (this the
value at a node before we observe the information vector) using

Ĵ(i) =
∑
θ∈Θi

qθJ(i , θ)

Thus, one can hypothesize that the value iteration algorithm looks like

Ĵk+1(i) =
∑
θ∈Θi

qθ min
j∈Γ(i)

{
tθij + Ĵk(j)

}
with Ĵk(t) = 0 for all k. The problem is easier to solve because we have
a smaller number of states.

Let’s say this algorithm converges. How do we find the optimal policies
from Ĵ∗?

µ∗(i , θ) ∈ arg min
j∈Γ(i)

{
tθij + Ĵ∗(j)

}
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Stochastic Shortest Paths
Ex ante Value Functions

Likewise, given a policy µ, we expect the ex ante cost of the policy µ to be a
solution to

Ĵµ(i) =
∑
θ∈Θi

qθ
{
tθi,µ(i,θ) + Ĵµ (µ(i , θ))

}
and Ĵµ(t) = 0. How do the Markov chains look like when we deal with the ex
ante value functions?

The transition diagram will have nodes as states. This is equivalent to aggre-
gating states in the previous Markov chain

1, [1] 2, [1]

3, [1,101] 3, [1,1] 4, [0]

1

0.9 0.1

1

1
1
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Stochastic Shortest Paths
Aggregated Markov Chains

The aggregated transition diagram (with states as nodes) looks as follows:

1
2

3 4

1

1

0.9

0.1

1

The policies we’ve seen so far are deterministic. Another way to look at

policies for the reduced state space is to think of them as the probability

with which we pick different downstream links at each node.

Lecture 11 Infinite Horizon Total Cost MDPs



29/38

Stochastic Shortest Paths
Aggregated Markov Chains

The transition matrix can be written as

Pµ =

4 1 2 3


4 1 0 0 0
1 0 0 1 0
2 0 0 0 1
3 0.1 0.9 0 0

Again, the transition matrices of total cost MDP will be assumed to include only
the green sub-matrix and we evaluate the cost of the policy using (I −Pµ)−1gµ.1 0 0

0 1 0
0 0 1

−
 0 1 0

0 0 1
0.9 0 0

−1  1
1

0.9(1) + 0.1(1)

 =

30
29
28
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Lecture Outline

Proper Policies
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Proper Policies
Introduction

We can formally prove the VI and PI ideas discussed so far. But we do
need some restrictions on the policies and a new definition of the transition
matrix.

Recall that α = 1 hence we cannot use Banach fixed point theorem. In
fact, one can define a new norm and use some contraction mapping results.
But we will take a simpler route.

Let the state space be X = {1, 2, . . . , n, t} where t represents a termination
state. Let as before, pij(u) represent the probability of reaching state j
when u is chosen in state i . We further assume that

I The terminal state is absorbing, i.e., ptt(u) = 1, ∀ u ∈ U(t).

I The terminal state is cost-free, i.e., g(t, u) = 0∀ u ∈ U(t).
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Proper Policies
Introduction

Define the T and Tµ mappings similarly but only for the set of states
{1, 2, . . . , n}. The cost of starting from the terminal state is zero.

(TJ)(i) = min
u∈U(i)

{
g(i , u) +

n∑
j=1

pij(u)J(j)

}
∀ i = 1, 2, . . . , n

(TµJ)(i) = g(i , µ(i)) +
n∑

j=1

pij(µ(i))J(j)∀ i = 1, 2, . . . , n

Does the monotonicity lemma hold for T and Tµ? Yes.

Lecture 11 Infinite Horizon Total Cost MDPs



33/38

Proper Policies
Introduction

As before, for a given policy µ, we can write the one-step transition prob-
ability matrix as

Pµ =

p11(µ(1)) . . . p1n(µ(1))
...

. . .
...

pn1(µ(n)) . . . pnn(µ(n))


and the cost vector for a fixed policy µ as

gµ =

g(1, µ(1))
...

g(n, µ(n))


Thus, the T-mu operator in matrix form can be written as

TµJ = gµ + PµJ

Notice that there is no α in the above expression.
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Proper Policies
Introduction

Suppose, J0 represents a vector of zeros. What happens when we apply
the Tµ repeatedly? We would accumulate the one-step costs and hence
get the total cost of associated Markov chain.

TµJ0 = gµ

T 2
µJ0 = gµ + Pµgµ

T 3
µJ0 = gµ + Pµgµ + P2

µgµ

...

Jµ = lim
N→∞

N−1∑
k=0

Pk
µgµ

We will soon extend this by proving that we get Jµ by applying Tµ repeat-

edly on any initial guess J0.
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Proper Policies
Definitions

Definition

A policy µ is proper if there is a positive probability that the terminal
state will be reached after at most k stages, starting from any initial
state, i.e.,

max
i=1,...,n

P
[
xk 6= t|x0 = i , µ

]
< 1

A simpler way to think of proper policies is that i → t for all i = 1, . . . , n
in the Markov chain associated with µ.

Thus, the terminal state will be reached w.p. 1 under a proper policy. Any
policy that is not proper is said to be an improper policy.
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Proper Policies
Assumptions

We make two main assumptions for the analysis of total cost MDPs:

Assumption 1: There exists at least one proper policy

Assumption 2: For all improper policies µ, Jµ(i) is ∞ for at least one i

Since, Jµ = limN→∞
∑N−1

k=0 Pk
µgµ, the second assumption implies that

some component of
∑N−1

k=0 Pk
µgµ diverges to ∞ as N → ∞.

For stochastic shortest paths, the above conditions are met if the destina-

tion is reachable from all nodes and the link travel times are positive.
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Your Moment of Zen
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