
CE 272
Traffic Network Equilibrium

Programming Task 1
Due February 3 (5 points)

General Instructions: This task is the first of four tasks in the computer programming project
and involves data processing of transportation networks. Each task in this project builds up
on the previous task. Hence, try to have a fully working version before proceeding to the next
task. Label your variables meaningfully and provide comments. You can make modifications
and optimize your code before you submit your final project. Share a zipped version of .py files
with the input files or a link to your Colab on Teams.

Data for the project: The GitHub has a repository of several real-world networks which will
be used for the project. Each network has a networkname net.tntp file. The first few lines of
this file have some metadata indicating the number of nodes, arcs etc.

<NUMBER OF ZONES> 24

<NUMBER OF NODES> 24

<FIRST THRU NODE> 1

<NUMBER OF LINKS> 76

<END OF METADATA>

The metadata is followed by the following link attributes (names may sometimes vary across
networks).

1. Tail node 6. B

2. Head node 7. Power

3. Capacity 8. Speed Limit

4. Length 9. Toll

5. Free flow time 10. Type

~ Init_node Term_node Capacity Length Free_Flow_Time B Power Speed_limit Toll Type;

1 2 25900.20064 6 6 0.15 4 0 0 1;

1 3 23403.47319 4 4 0.15 4 0 0 1;

2 1 25900.20064 6 6 0.15 4 0 0 1;

2 6 4958.180928 5 5 0.15 4 0 0 1;

3 1 23403.47319 4 4 0.15 4 0 0 1; ...

Task Objectives:

1. Select the SiouxFalls network. This network is a simplified version of a city in South
Dakota, US and is popular test network in transportation literature (see Figure 1).

2. Do not manipulate the input files. Your code must be designed to handle the data in the
current form and should work for the other networks as well.

3. Create a class in your code for nodes and for arcs. The members of the node class

should include the node number and the adjacency/downstream list of nodes and arcs
(store these as vectors of variable sizes). The arc class must contain all of the above
attributes.1

1Defining classes will make it easy for you to implement the algorithms from the course. If you haven’t used
classes before here is some background material: https://docs.python.org/3/tutorial/classes.html

1

https://github.com/bstabler/TransportationNetworks
https://docs.python.org/3/tutorial/classes.html


4. Within the arc class use the int data type for storing the Tail node, Head node, and
Type. For all the remaining attributes use a double data type. For the node class use
the int data type for the node number and adjacency lists.

5. Read and store the number of nodes and links from the metadata.

6. Create a class instance for each arc and write a function that reads the rows in the above
file and stores the data in the appropriate fields.

7. Create a class instance for each node and using the arc data populate the node number,
adjacent node list, and adjacent arc list.

8. Write functions to print the following items.

(a) Node-node adjacency matrix

(b) Node-arc incidence matrix

(c) Adjacency list of the nodes

9. Test your code for Eastern-Massachusetts, Chicago-Sketch, Anaheim, and Winnipeg.
Do not hard-code anything except the network name. You should be able to change the
network name and the code must provide the required outputs.

10. Create graph objects for these networks using NetworkX, which is a Python package for
network analysis. Print the node-node adjacency matrix and adjacency list using this
package. Verify your answers from your code with this output.

2

https://networkx.org/documentation/stable/index.html


 

1

8

4 5 63

2

15 19

17

18

7

12 11 10 16

9

20

23 22

14

13 24 21

3

1

2

6

8

9

11

5

 15

12
2313

21

16 19

17

20
18 54

55

50

48

29

51 49 52

58

24

27

32

33

36

7 35

4034

41

44

57

45

72

70

46 67

69 65

25

28 43

53

59 61

56 60

66 62

68

63
7673

30

7142

647539

74

37 38

26

4 14

22 47

10 31

 
 

 
 Figure 1: Sioux Falls Test Network

3


