
CE 272
Traffic Network Equilibrium

Lecture 9
Frank-Wolfe Algorithm

Lecture 9 Frank-Wolfe Algorithm



2/30

Previously on Traffic Network Equilibrium...

Theorem

x∗ satisfies the VI, t(x∗)T (x− x∗) ≥ 0 ∀ x ∈ X ⇔ it satisfies the Wardrop
principle

Lecture 9 Frank-Wolfe Algorithm



3/30

Previously on Traffic Network Equilibrium...

Definition

A direction vector ϕk is said to be a descent direction if ∇f (xk)Tϕk < 0
for all k .

∇f (xk)Tϕk < 0 is a measure of how much the objective decreases if we
take a step in the direction of ϕk .

Proposition

−∇f (xk) is always a descent direction as long as the gradient is non-zero

Thus, assuming that we take small steps in the direction of opposite to

the gradient, we can guarantee that the algorithm generates a descending

sequence.

Lecture 9 Frank-Wolfe Algorithm



4/30

Previously on Traffic Network Equilibrium...

1 Initialize the algorithm with a feasible path (y) and link flow (x)
solution

2 Compute the link delays using the link flows x

3 Find the shortest paths between all OD pairs

4 For every OD pair, assign drs to the shortest path between (r , s)
This step is called the all-or-nothing assignment. Denote the
resulting path and link flow vectors by ŷ and x̂

5 If we reach or are close to the optimum, stop. Else, update the link
flows xk+1 = ηk x̂k + (1− ηk)xk , where ηk ∈ [0, 1] and return to 2

Lecture 9 Frank-Wolfe Algorithm



5/30

Previously on Traffic Network Equilibrium...

Define the shortest path travel time SPTT =
∑

(i,j)∈A x̂ij tij(xij) as the

total travel time when the travel times are fixed at tij(xij) and all users are
loaded on corresponding shortest paths.

Relative Gap =
TSTT

SPTT
− 1

The average excess cost (AEC) is defined as

AEC =
TSTT − SPTT∑

(r ,s)∈Z 2 drs

and indicates the average difference between a traveler’s path and the

shortest path available to him or her.

Lecture 9 Frank-Wolfe Algorithm



6/30

Lecture Outline

1 Frank-Wolfe Algorithm

2 Examples

3 Conjugate Frank-Wolfe

Lecture 9 Frank-Wolfe Algorithm



7/30

Lecture Outline

Frank-Wolfe Algorithm

Lecture 9 Frank-Wolfe Algorithm



8/30

Frank-Wolfe Algorithm
Introduction

In MSA, we showed that x̂k − xk is a descent direction at every
iteration k . But does the objective always decrease?

The step size is easy to compute but can we do better?

Lecture 9 Frank-Wolfe Algorithm



9/30

Frank-Wolfe Algorithm
Introduction

Recall that the link flows were updated using

xk+1 = xk + ηk(x̂k − xk)

= ηk x̂k + (1− ηk)xk

𝒙𝑘

𝑋

ෝ𝒙𝑘

𝒙𝑘+1

For different values of ηk , we get different xk+1 along the above line seg-

ment. Can we pick an optimal ηk?

Lecture 9 Frank-Wolfe Algorithm



10/30

Frank-Wolfe Algorithm
Introduction

Unlike MSA which uses pre-determined step sizes, in Frank-Wolfe (FW)
method we select a step size that minimizes the Beckmann function. Let’s
suppress the index k for brevity.

I Objective: f (η) =
∑

(i,j)∈A

∫ ηx̂ij+(1−η)xij

0

tij(ω) dω

I Decision Variable: η

I Constraint: η ∈ [0, 1]

Note that the current link flows x and the all-or-nothing link flows x̂ are

constant in the above optimization model.

Lecture 9 Frank-Wolfe Algorithm



11/30

Frank-Wolfe Algorithm
First-order Conditions

The objective is convex in η. (Why?) So the first-order conditions imply
that f ′(η) = 0 at an interior η.

d

dη

∑
(i,j)∈A

∫ ηx̂ij+(1−η)xij

0

tij(ω) dω = 0

⇒
∑

(i,j)∈A

tij (ηx̂ij + (1− η)xij) (x̂ij − xij) = 0

Solving this equation provides the optimal η (assuming it lies in the interior)
which then gives the next iterate.

Within each FW iteration, more computations are needed compared to

MSA but the overall number of iterations are reduced.

Lecture 9 Frank-Wolfe Algorithm



12/30

Frank-Wolfe Algorithm
Optimizing the Step Size

Finding an analytical solution to the earlier equation is difficult unless the
travel time functions are linear. Instead, the optimal step size can be
calculated using one of the following methods

I Bisection

I Newton’s method

Newton’s method, as discussed in the last class, requires f ′′(η) which is

easy to compute. However, since η ∈ [0, 1], we might need to project it

back to the feasible region if it exceeds 1 or falls below 0.

Lecture 9 Frank-Wolfe Algorithm



13/30

Frank-Wolfe Algorithm
Optimizing the Step Size

Bisection(G , x, x̂)

¯
η = 0, η̄ = 1

while η̄ −
¯
η > ε do

η ← 1
2
(
¯
η + η̄)

if
∑

(i,j)∈A tij (ηx̂ij + (1− η)xij) (x̂ij − xij) > 0 then
η̄ ← η

else

¯
η ← η

end if
end while
return η

Will the method work if the optimum occurs at the boundary?

Lecture 9 Frank-Wolfe Algorithm



14/30

Frank-Wolfe Algorithm
History Break

The Frank-Wolfe algorithm was originally proposed in 1956 for quadratic
programs and convex programs with linear constraints.

Marguerite Frank Philip Wolfe

https://www.youtube.com/watch?v=24e08AX9Eww

Lecture 9 Frank-Wolfe Algorithm

https://www.youtube.com/watch?v=24e08AX9Eww


15/30

Optimizing the Step Size
Summary

Frank-Wolfe(G)

k ← 1
Find a feasible x̂

while Relative Gap > 10−4 do
if k = 1 then η ← 1 else η ← Bisection(G , x, x̂)
x← ηx̂ + (1− η)x
Update t(x)
x̂← 0
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z , (i , j) ∈ p∗rs do

x̂ij ← x̂ij + drs
end for

end for
Relative Gap ← TSTT/SPTT − 1
k ← k + 1

end while

Lecture 9 Frank-Wolfe Algorithm



16/30

Lecture Outline

Examples

Lecture 9 Frank-Wolfe Algorithm



17/30

Examples
Example 1

Find the UE flows in the following network using the FW algorithm

1

2

3

46 6

50 + 𝑥

50 + 𝑥10𝑥

10𝑥

10 + 𝑥

Lecture 9 Frank-Wolfe Algorithm



18/30

Examples
Example 2

Find the UE flows in the following network using the FW algorithm

1

2

3

4

5000

5 6

5000

10000 10000

Lecture 9 Frank-Wolfe Algorithm



19/30

Lecture Outline

Conjugate Frank-Wolfe

Lecture 9 Frank-Wolfe Algorithm



20/30

Conjugate Frank-Wolfe
Drawbacks of FW

FW and MSA both have a drawback of zig-zagging since they are always
constrained to take steps in the directions of corner points.

𝒙

𝒙∗

For this reason, they perform very well during the initial iterations but the
rate of convergence decreases over time.

Can we find a search direction which is aligned along (or close to) x∗−x?

Lecture 9 Frank-Wolfe Algorithm



21/30

Conjugate Frank-Wolfe
Intuition

Consider a quadratic program of the form f (x) = 1
2xTAx− bTx

The gradient of f is ∇f (x) = Ax− b. Hence, the optimal solution occurs
at x∗ = A−1b.

Suppose A is a diagonal matrix, how many operations are needed to com-

pute the optimal solution?

Lecture 9 Frank-Wolfe Algorithm



22/30

Conjugate Frank-Wolfe
Intuition

One can visualize this by considering the function f (x1, x2) = x21 + x22 .
Here, A =

[
2 0
0 2

]
and b =

[
0
0

]
.

−4 −2 0 2 4
−4

−2

0

2

4

The optimal value of each coordinate can be set sequentially and we can

get to the origin in 2 steps instead of moving in the direction of −∇f (xk).
Lecture 9 Frank-Wolfe Algorithm



23/30

Conjugate Frank-Wolfe
Intuition

Now consider the function f (x) = x21 + x22 + x1x2 + x1 − x2. For this
function, A =

[
2 1
1 2

]
and b =

[−1
1

]
.

−4 −2 0 2 4
−4

−2

0

2

4

Can we reach the optimum in two steps?

Lecture 9 Frank-Wolfe Algorithm



24/30

Conjugate Frank-Wolfe
Intuition

Think of a transformation Px that maps these ellipses to circles and we
move along vectors that are orthogonal in the transformed space. These
directions in the original space are called conjugate vectors.

The P matrix can be defined using the singular value decomposition of A.

Lecture 9 Frank-Wolfe Algorithm



25/30

Conjugate Frank-Wolfe
Conjugacy

Definition

Vectors ϕi and ϕj are conjugate to a symmetric positive definite matrix
A if

ϕT
i Aϕj = 0∀ i 6= j

Notice that if A is the identify matrix, then the vectors are orthogonal to
each other.

In Conjugate Frank-Wolfe (CFW) method, we make sure that consecutive

search directions are conjugate to the Hessian of the objective (Beckmann

function).

Lecture 9 Frank-Wolfe Algorithm



26/30

Conjugate Frank-Wolfe
Selecting the Direction

We will use the following notation to describe different points:
x – The current iterate
x̂ – All-or-nothing flows
x̄ – Target direction towards which we want to move in CFW

𝒙𝑘

ෝ𝒙𝑘

𝒙𝑘−1

ഥ𝒙𝑘ഥ𝒙𝑘−1

The goal is to ensure that the two
yellow vectors (which are directions
taken by the algorithm in two con-
secutive iterations) are conjugate to
the Hessian.

What about feasibility? x̄k is chosen
to lie between x̄k−1 and x̂k .

Lecture 9 Frank-Wolfe Algorithm



27/30

Conjugate Frank-Wolfe
Selecting the Direction

𝒙𝑘

ෝ𝒙𝑘

𝒙𝑘−1

ഥ𝒙𝑘ഥ𝒙𝑘−1

From the definition of conjugate vectors,

(x̄k−1 − xk)T∇2f (xk)(x̄k − xk) = 0

But x̄k = θx̄k−1 + (1− θ)x̂k .

Plugging this in the above equation and
solving for θ we get,

θ = − (x̄k−1 − xk)T∇2f (xk)(x̂k − xk)

(x̄k−1 − xk)T∇2f (xk)(x̄k−1 − x̂k)

Lecture 9 Frank-Wolfe Algorithm



28/30

Conjugate Frank-Wolfe
Selecting the Step Size

x̄k gives us the direction but not the next iterate. We still need to decide
how far to move along this direction.

𝒙𝑘

ෝ𝒙𝑘

𝒙𝑘−1

ഥ𝒙𝑘ഥ𝒙𝑘−1

𝒙𝑘+1

𝜂𝑘

1 − 𝜂𝑘

Just as with FW, the step search η is found by minimizing the Beckmann
function along the direction x̄k − xk .

Lecture 9 Frank-Wolfe Algorithm



29/30

Supplementary Reading

Mitradjieva, M., & Lindberg, P. O. (2013). The stiff is moving-
conjugate direction Frank-Wolfe Methods with applications to traffic
assignment. Transportation Science, 47(2), 280-293.

Lecture 9 Frank-Wolfe Algorithm



30/30

Your Moment of Zen

Now that’s what you call an accurate VMS!

Lecture 9 Frank-Wolfe Algorithm


