
CE 272
Traffic Network Equilibrium

Lecture 8
Method of Successive Averages

Lecture 8 Method of Successive Averages



2/33

Previously on Traffic Network Equilibrium...

The following plot shows the level sets and the gradient [2x1 4x2]T .

−4 −2 0 2 4

−4

−2

0

2

4

The gradient vector is ‘orthogonal to the level sets’∗

Lecture 8 Method of Successive Averages



3/33

Previously on Traffic Network Equilibrium...

Theorem

x∗ satisfies the VI, t(x∗)T (x− x∗) ≥ 0 ∀ x ∈ X ⇔ it satisfies the Wardrop
principle

Lecture 8 Method of Successive Averages



4/33

Previously on Traffic Network Equilibrium...

The User Equilibrium (UE) formulation in terms of the path flows ys is

given by

min
∑

(i ,j)∈A

∫ ∑
p∈P δ

p
ijyp

0
tij(ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

Lecture 8 Method of Successive Averages



5/33

Previously on Traffic Network Equilibrium...

Suppose τp(y) denotes the travel time on path p given a path flow vector
y. From the KKT conditions, eliminating λp, for all (r , s) ∈ Z 2, p ∈ Prs ,

τp(y) ≥ µrs

yp (τp(y)− µrs) = 0

From the above equations, µrs is the length of the shortest path.

If yp > 0, then path p must be shortest. If yp = 0, the travel time of path

p must be at least µrs . Voila! Wardrop Principle.

Lecture 8 Method of Successive Averages



6/33

Previously on Traffic Network Equilibrium...

Let the feasible region of path flows be represented as

Y =
{

y :
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2, yp ≥ 0 ∀ p ∈ P
}

The second-best tolling problem with VI-based equilibrium constraints can
be written as

min
y,c

∑
p∈P

ypτp(y)

s.t. y ∈ Y

cij = 0∀ (i , j) ∈ A′

[τ (y) + ∆Tc]T (y′ − y) ≥ 0 ∀ y′ ∈ Y

Note that the tolls do not feature in the objective since they are transfer

payments. We assume that they are returned to the system and hence it

does not matter how much toll is collected.

Lecture 8 Method of Successive Averages



7/33

Previously on Traffic Network Equilibrium...

If the link delay functions are separable and non-decreasing, the VIs can
be replaced with the KKT conditions of the Beckmann formulation.

min
y,c,µ

∑
p∈P

ypτp(y)

s.t. y ∈ Y

cij = 0∀ (i , j) ∈ A′

τp(y) +
∑

(i,j)∈A

δpijcij ≥ µrs ∀ (r , s) ∈ Z 2, p ∈ Prs

yp

(
τp(y) +

∑
(i,j)∈A

δpijcij − µrs

)
= 0∀ (r , s) ∈ Z 2, p ∈ Prs

Lecture 8 Method of Successive Averages



8/33

Lecture Outline

1 Solving Convex Programs

2 Method of Successive Averages

3 Measuring Convergence

4 Proof of Convergence

Lecture 8 Method of Successive Averages



9/33

Lecture Outline

Solving Convex Programs

Lecture 8 Method of Successive Averages



10/33

Solving Convex Programs
Introduction

How can we find the optimal solution of an unconstrained convex
program?

Most methods are algorithmic in nature, i.e., we start with a feasible
solution and improve it till we reach or are close to the optimal value.

Lecture 8 Method of Successive Averages



11/33

Solving Convex Programs
Descent Directions

Definition

A sequence x1, x2, . . . is said to be descending if f (x1) > f (x2) > . . .

Algorithms used to solve convex program try to generate a descending
sequence of feasible values. The general update rule in such algorithms is

xk+1 = xk + ηkϕ
k

where ηk is the step size and ϕk is a direction vector in iteration k.

Will we always discover an optimal solution using such an algorithm?

Lecture 8 Method of Successive Averages



12/33

Solving Convex Programs
Descent Direction

Definition

A direction vector ϕk is said to be a descent direction if ∇f (xk)Tϕk < 0
for all k .

∇f (xk)Tϕk < 0 is a measure of how much the objective decreases if we
take a step in the direction of ϕk .

Proposition

−∇f (xk) is always a descent direction as long as the gradient is non-zero

Thus, assuming that we take small steps in the direction of opposite to

the gradient, we can guarantee that the algorithm generates a descending

sequence.

Lecture 8 Method of Successive Averages



13/33

Solving Convex Programs
Gradient Descent

These algorithms are called gradient descent methods and the update
rule can be written as

xk+1 = xk − ηk∇f (xk)

Lecture 8 Method of Successive Averages



14/33

Solving Convex Programs
Gradient Descent

What happens when you take a large step along a descent direction?

1

𝑓′ 1 = 2

𝑓(𝑥) = 𝑥2

Hence, the step size plays a major role in the convergence and rate of

convergence of the algorithm.

Lecture 8 Method of Successive Averages



15/33

Solving Convex Programs
Newton’s Method

If second derivatives are available and the Hessian is positive definite,
one can modify the descent direction to obtain a faster algorithm
called the Newton’s method.

This method approximates the function with a quadratic at each
point and updates the decision variables as

xk+1 = xk − ηk∇2f (xk)−1∇f (xk)

Lecture 8 Method of Successive Averages



16/33

Lecture Outline

Method of Successive Averages

Lecture 8 Method of Successive Averages



17/33

Method of Successive Averages
General Approach to Compute Equilibrium

To solve the Beckmann formulation, we cannot simply use any of
the earlier off-the-shelf method since the problem has constraints.

Most methods that we discuss are gradient descent-type approaches
but we will pick step sizes in such a way that we stay within the
feasible region at each iteration.

Lecture 8 Method of Successive Averages



18/33

Method of Successive Averages
General Approach to Compute Equilibrium

All equilibrium algorithms typically involve the following strategy

Update and Fix 
Link Costs 

Compute 
Shortest Paths 

Shift Travelers to 
New Paths 

Lecture 8 Method of Successive Averages



19/33

Method of Successive Averages
General Approach to Compute Equilibrium

1 Initialize the algorithm with a feasible path (y) and link flow (x)
solution

2 Compute the link delays using the link flows x

3 Find the shortest paths between all OD pairs

4 For every OD pair, assign drs to the shortest path between (r , s)
This step is called the all-or-nothing assignment. Denote the
resulting path and link flow vectors by ŷ and x̂

5 If we reach or are close to the optimum, stop. Else, update the link
flows xk+1 = ηk x̂k + (1− ηk)xk , where ηk ∈ [0, 1] and return to 2

Lecture 8 Method of Successive Averages



20/33

Method of Successive Averages
General Approach to Compute Equilibrium

I Notice that we never violate feasibility. (Why?)

I Step 5 in which the link flow vector is convex combination of the
old solution and the all-or-nothing assignment is similar to the
gradient descent discussed earlier.

xk+1 = ηk x̂k + (1− ηk)xk

= xk + ηk(x̂k − xk)

Why is (x̂k − xk) a descent direction? The gradient of Beckmann function

is t(xk) and t(xk)T (x̂k − xk) ≤ 0 since x̂ are flows on the shortest paths.

Lecture 8 Method of Successive Averages



21/33

Method of Successive Averages
Step Sizes

Different equilibrium algorithms can be designed just by modifying the way
step sizes are chosen in Step 5.

Just as we saw earlier, selecting a very big or small step size can be trou-
blesome.

The method of successive averages is the simplest algorithm in which the
step sizes satisfy ∑

k

ηk =∞,
∑
k

η2k ≤ ∞

Can you think of a sequence that satisfies the above conditions?

ηk =
1

k∑
k

1
k2 = π2

6 , the Basel problem, was an open problem for 90 years!

Lecture 8 Method of Successive Averages



22/33

Lecture Outline

Measuring Convergence

Lecture 8 Method of Successive Averages



23/33

Measuring Convergence
Introduction

Since the equilibrium flows are a solution to a non-linear program,
the solutions can be in the interior of the feasible region.

As computers represent numbers using finite precision, one can only
expect flows that are nearly optimal.

When do we terminate our equilibrium algorithms? Can we stop
when the differences in the link flows are negligible?

Lecture 8 Method of Successive Averages



24/33

Measuring Convergence
Introduction

Before solving the problem we do not know the optimal flow or
the optimal value of the Beckmann function (or a lower bound) to
estimate ‖x− x∗‖ or f (x)− f (x∗).

Instead, the convergence criteria can be linked to the Wardrop prin-
ciple. Two most popular gap measures for convergence are

I Relative gap

I Average excess cost

Lecture 8 Method of Successive Averages



25/33

Measuring Convergence
Relative Gap

At the start of any iteration, we can compute the TSTT of the current
solution

∑
(i,j)∈A xij tij(xij).

Define the shortest path travel time SPTT =
∑

(i,j)∈A x̂ij tij(xij) as the

total travel time when the travel times are fixed at tij(xij) and all users are
loaded on corresponding shortest paths.

Note that SPTT < TSTT except at equilibrium (Why?)

Relative Gap =
TSTT

SPTT
− 1

The relative gap measure has no units and no intuitive meaning. For most

applications, equilibrium algorithms are terminated if the gap is less than

10−4.

Lecture 8 Method of Successive Averages



26/33

Measuring Convergence
Average Excess Cost

The average excess cost (AEC) is defined as

AEC =
TSTT − SPTT∑

(r ,s)∈Z2 drs

and indicates the average difference between a traveler’s path and
the shortest path available to him or her.

AEC can be measured in min or seconds. This measure is somewhat
related to ε-Nash Equilibria.

Lecture 8 Method of Successive Averages



27/33

Measuring Convergence
Summary

MSA(G)

k ← 1
Find a feasible x̂

while Relative Gap > 10−4 do
x← 1

k
x̂ + (1− 1

k
)x

Update t(x)
x̂← 0
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z , (i , j) ∈ p∗rs do

x̂ij ← x̂ij + drs
end for

end for
Relative Gap ← TSTT/SPTT − 1
k ← k + 1

end while

Lecture 8 Method of Successive Averages



28/33

Measuring Convergence
Example 1

Compute the UE flows in the following network using MSA

1

2

3

46 6

50 + 𝑥

50 + 𝑥10𝑥

10𝑥

10 + 𝑥

Lecture 8 Method of Successive Averages



29/33

Measuring Convergence
Example 2

Find the UE flows using MSA in the following network where the delay
function on each link is 10 + x/100

1

2

3

4

5000

5 6

5000

10000 10000

Lecture 8 Method of Successive Averages



30/33

Lecture Outline

Proof of Convergence

Lecture 8 Method of Successive Averages



31/33

Proof of Convergence
Background

MSA was widely used even before it was formally proved by Powell and
Sheffi in 1982. The proof relies on an extended version of the Mean Value
Theorem.

Theorem

If f and f ′ are continuous on [a, b] and differentiable on (a, b) then
∃ c ∈ (a, b) such that

f (b) = f (a) + f ′(a)(b − a) +
1

2
f ′′(c)(b − a)2

In higher dimensions, this can be written as

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (z)(y − x)

for some z that lies on the line segment between x and y.

Lecture 8 Method of Successive Averages



32/33

Proof of Convergence
Bounding the Extent of Descent

At iteration k,

f (xk+1) = f (xk) +∇f (xk)T (xk+1 − xk) +
1

2
(xk+1 − xk)T∇2f (z)(xk+1 − xk)

where z lies on the line segment between xk and xk+1.

f (xk+1) = f (xk) +∇f (xk)Tηkϕ
k +

1

2
ηk

2ϕkT∇2f (z)ϕk

Adding the above equations for k = 1, 2, . . . ,K

f (xK+1) = f (x1) +
K∑

k=1

ηk∇f (xk)Tϕk +
K∑

k=1

1

2
ηk

2ϕkT∇2f (z)ϕk

Taking limits as K →∞, we can show that −∞ < ∇f (xk)Tϕk ≤ 0. (How?)

Lecture 8 Method of Successive Averages



33/33

Your Moment of Zen

Lecture 8 Method of Successive Averages


