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Previously on Traffic Network Equilibrium...

When does strong duality hold? In many cases, some of which do not
even require convexity! The conditions (called constraint qualifications)
however are usually complicated and we do not need to know much about
it for this course.

Let’s look at one instance called Slater’s condition. If our primal was of
the form

min
x

f (x)

s.t. gi (x) ≤ 0 ∀ i = 1, 2, . . . , l

Ax = b

where f and gs are all convex and there exist a feasible x such that gi (x) <

0 ∀ i = 1, . . . l , then strong duality holds.
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Previously on Traffic Network Equilibrium...

Proposition (Necessary KKT Conditions)

Assuming strong duality holds, any x∗ and (λ∗,µ∗) that are optimal for the
primal and dual problems must satisfy

I Primal Feasibility

gi (x∗) ≤ 0∀ i = 1, . . . , l

hi (x∗) = 0∀ i = 1, . . . ,m

I Dual Feasibility
λ∗ ≥ 0

I Complementary Slackness

λ∗i gi (x∗) = 0∀ i = 1, . . . ,m

I Gradient of the Lagrangian vanishes

∇xf (x∗) +
l∑

i=1

λ∗i ∇xgi (x∗) +
m∑
i=1

µ∗i ∇xhi (x∗) = 0
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Previously on Traffic Network Equilibrium...

Proposition (Sufficient KKT Conditions)

Suppose f , gi , and hi are all differentiable and convex. Then, any x̄ and (λ̄, µ̄)
that satisfy the following KKT conditions are optimal to the primal and dual
and the duality gap is 0.

gi (x̄) ≤ 0 ∀ i = 1, . . . , l

hi (x̄) = 0∀ i = 1, . . . ,m

λ̄ ≥ 0

λ̄igi (x̄) = 0∀ i = 1, . . . ,m

∇xf (x̄) +
l∑

i=1

λ̄i∇xgi (x̄) +
m∑
i=1

µ̄i∇xhi (x̄) = 0
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Previously on Traffic Network Equilibrium...

LP formulation for shortest paths:

min
∑

(i ,j)∈A

tijxij

s.t.
∑

j :(i ,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = r

−1 if i = s

0 otherwise

xij ≥ 0 ∀ (i , j) ∈ A

Equality constraints can be written as Ax = b, where A is an n×m
matrix, x is a m × 1 vector, and b is a n × 1 vector.
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Previously on Traffic Network Equilibrium...

Primal feasibility:

Ax = b

0 ≤ xij ≤ 1∀ (i , j) ∈ A

Dual feasibility:

λij ≥ 0 ∀ (i , j) ∈ A

Complementary Slackness:

λijxij = 0∀ (i , j) ∈ A

Gradient of the Lagrangian vanishes:

λij = tij + µi − µj ∀, (i , j) ∈ A

From the above conditions, interpreting µs as the distance labels, we get

the Bellman’s conditions: µj ≤ tij + µi and if xij = 1⇒ µj = µi + tij
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Lecture Outline

1 Preliminaries

2 Path-based Formulation

3 Link-based Formulation
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Lecture Outline

Preliminaries

Lecture 6 Wardrop User Equilibrium and Beckmann Formulation



9/35

Preliminaries
Centroids and Centroid Connectors

First, let’s extend our definition of a graph to include a subset of nodes

from which trips originate or end. These nodes are called zone centroids

and can be actual junctions or artificial nodes.

If zone centroids are artificially cre-
ated, they are connected to nearby
streets using artificial links called
centroid connectors.

It is assumed that artificially created

centroid connectors can be traversed

instantaneously.
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Preliminaries
Demand

The demand information for all OD pairs is commonly referred to as OD
matrix or trip tables.

The number of person trips are computed from the first two steps of the
four-step process. In the third step, these trips are assigned to different
modes (car, bus, two-wheeler etc.) resulting in a trip table for each mode.

But for equilibrium analysis, we assume that demand comprises of only
passenger cars.∗ The demand of other types of vehicles are adjusted by
factors called passenger car units (PCUs) that reflect their sizes relative
to that of a car.

I Bicycle: 0.2

I Motorcycle: 0.5

I Buse: 3.5

* This assumption will be relaxed later.
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Preliminaries
BPR Functions

The travel time on a link will be assumed to be purely a function of the
flow on it (Separability assumption).

Typically, link travel times are assumed to follow the Bureau of Public
Roads (BPR) function

tij(xij) = t0ij

(
1 + α

(
xij
Cij

)β)
t0ij is the free-flow travel time, xij is the flow on link (i , j), and Cij is the
capacity or throughput, which is the maximum number of vehicles that can
pass through a cross section of the road (both are measured in vehicles/hr).

Link travel time functions also called link-performance functions, delay

functions, or latency functions.

∗ The α and β in the above expression are the same as B and Power in your Programming Task 1
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Preliminaries
BPR Functions

Commonly used parameter values in the BPR functions are α = 0.15 and

β = 4. One can calibrate these values for different links using actual traffic

counts.
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10

20

30
10(1+0.15( x

2000
)4

xij

t i
j(
x i
j)

Note that the BPR functions are non-negative and strictly increasing.
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Preliminaries
BPR Functions

What are the equilibrium flows in a network of two parallel links (red and

blue) with the following delay functions when the total demand is (a) 2000

and (b) 5000.
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xij

tij(xij)
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Preliminaries
BPR Functions

I The BPR functions are defined for flow values that exceed capacity.
We’ll ignore capacity constraints for now and look at formulations
and solution techniques which explicitly model capacity constraints
later.

I Alternately, we can define delay functions that exhibit a steep
increase at flows close to the roadway capacity.

I Practitioners often use V/C ratios, i.e., xij/Cij , to identify the links
that are heavily congested.
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Preliminaries
Link and Path Flows

Equilbrium solutions can be computed in terms of the link flows or the
path flows.

Knowledge of either of them lets us compute link travel times using the
delay functions.

The travel time on a path is simply the sum of the travel times on the

links belonging to the path.
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Preliminaries
Link and Path Flows

We will denote the link flow vector using x and the set of feasible link flows
(ones that satisfy flow conservation) as X .

Path flows are denoted by y and the set of feasible path flows are repre-
sented using Y . (Should we include paths with cycles?)

Given a path flow vector y, the link flows uniquely x. Let δpij denote a
indicator variable which is 1 if link (i , j) is in path p and is 0 otherwise.

Define a matrix of δs called a link-path incidence matrix ∆ in which rows
represent links and columns represent paths.

x = ∆y
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Preliminaries
Link and Path Flows

Given a link flow vector x, the path flows cannot however be uniquely
identified.

1 2

2

2

3

2

2

Can you find multiple path flows in the above network?
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Preliminaries
Link and Path Flows
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Lecture Outline

Path-based Formulation
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Path-based Formulation
Introduction

We will start with a path-based formulation to establish connections
with the Wardrop principle.

However, from a computational standpoint, this formulation is not
an ideal choice since the number of paths can be very large.

Denote the set of paths between an OD pair (r , s) as Prs . Let the
set of all paths between all OD pairs be P = ∪(r ,s)∈Z2Prs .
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Path-based Formulation
Optimization Model

To define an optimization model, we need

I Objective

I Decision Variables

I Constraints

The decision variables are the path flows and the constraints are the
flow conservation constraints.

But how do we define the objective so that the optimal values satisfy
Wardrop equilibria?
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Path-based Formulation
Optimization Model

Can we reverse engineer a convex function such that the KKT con-
ditions are equivalent to the Wardrop equilibria?

Martin Beckmann, C. B. McGuire, and Christopher Winsten in 1956
discovered such a function in their seminal book Studies in the Eco-
nomics of Transportation.∑

(i ,j)∈A

∫ xij

0
tij(ω) dω

This function is commonly referred to as the Beckmann function.
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Path-based Formulation
Optimization Model

Since the decision variables are path flows, we will replace xij in the
objective

∑
(i ,j)∈A

∫ xij
0 tij(ω) dω with

∑
p∈P δ

p
ijyp.

The complete formulation purely in terms of the ys take the form

min
∑

(i ,j)∈A

∫ ∑
p∈P δ

p
ijyp

0
tij(ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P
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Path-based Formulation
Optimization Model

I If the delay functions are non-decreasing, is the objective convex?

I Does Slater’s condition hold?

min
∑

(i ,j)∈A

∫ ∑
p∈P δ

p
ijyp

0
tij(ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P
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Path-based Formulation
KKT Conditions

What are the KKT conditions for the above formulation?

L(y,λ,µ) =
∑

(i ,j)∈A

∫ ∑
p∈P δ

p
ijyp

0
tij(ω) dω +

∑
p∈P

λp(−yp)

+
∑

(r ,s)∈Z2

µrs

drs −
∑
p∈Prs

yp
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Path-based Formulation
KKT Conditions

Primal feasibility: ∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

Dual feasibility:

λp ≥ 0 ∀ p ∈ P

Complementary Slackness:

λpyp = 0∀ p ∈ P

Gradient of the Lagrangian vanishes:∑
(i,j)∈A

δpij tij(xij)− λp − µrs = 0∀ (r , s) ∈ Z 2, p ∈ Prs
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Path-based Formulation
KKT Conditions

From the last three conditions, eliminating λp, for all (r , s) ∈ Z 2, p ∈ Prs ,

∑
(i,j)∈A

δpij tij(xij) ≥ µrs

yp

 ∑
(i,j)∈A

δpij tij(xij)− µrs

 = 0

From the above equations, µrs is the length of the shortest path.

If yp > 0, then path p must be shortest. If yp = 0, the travel time of path

p must be at least µrs . Voila! Wardrop Principle.
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Path-based Formulation
Uniqueness

Assuming that the travel times are non-decreasing, we showed that
the objective is convex.

Does the above formulation have a unique optimum?
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Path-based Formulation
Uniqueness

The objective is convex, but it need not be strictly convex. Hence, the
solution to the optimization model need not be unique.

3 4

2 + 𝑥

1 + 2𝑥

1

2

5

1

2

1

For example, in the above network, assume there are 2 travelers from 1 to

5 and 3 travelers from 2 to 5.
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Path-based Formulation
Uniqueness

There are multiple path flow solutions which satisfy the Wardrop priciple.

3 4
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3 4
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2
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2
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OD Pair (1,5)

OD Pair (2,5)

0

2

3

0

Path 
Flow 1
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Flow 2

2

0

1

2

For both solutions, the travel time on paths between OD pair (1,5) is 7 and the

travel times on paths between (2,5) is 8.
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Lecture Outline

Link-based formulation
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Link-based Formulation
Change of Variables

We can rewrite the earlier formulation purely in terms of the link flow
variables, i.e., the decision variables are the xs.

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω

s.t.
∑

j :(i,j)∈A

x rsij −
∑

h:(h,i)∈A

x rshi =


dis if i = r

−dri if i = s

0 otherwise

∀ (r , s) ∈ Z 2

xij =
∑

(r ,s)∈Z 2

x rsij ∀ (i , j) ∈ A

x rsij ≥ 0∀ (i , j) ∈ A, (r , s) ∈ Z 2

This optimization program, also called the Beckmann formulation, has

fewer variables and is easier to solve.

Lecture 6 Wardrop User Equilibrium and Beckmann Formulation



33/35

Link-based Formulation
Uniqueness

The objective is again convex if the delay functions are non-decreasing.
(Why?)

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω

In addition, if we assume that the delay functions are strictly increasing,
the objective is strictly convex. (Why?)

Thus, for strictly increasing delay functions, the equilibrium link flows

are unique but the path flows need not be.
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Link-based Formulation
Summary

At the start of this lecture, we wanted an objective that represented
the ‘energy’ of the system. The Beckmann function essentially serves
this purpose but it does not have any physical meaning or interpre-
tation.

It is also called the potential function and we will learn more about
such functions soon.

In the next few lectures, we will explore methods to solve the link-
based formulation.
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Your Moment of Zen
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