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Previously on Traffic Network Equilibrium...

Optimization problems typically have the following three components:

1 Objective function

2 Decision variables

3 Constraints

While the first two are present in all optimization models, it is not necessary
to have constraints. Problems without constraints are called unconstrained
problems.

Lecture 5 Notation and Shortest Path Algorithms



3/62

Previously on Traffic Network Equilibrium...

Proposition (Sufficient KKT Conditions)

Suppose f , gi , and hi are all differentiable and convex. Then, any x̄ and
(λ̄, µ̄) that satisfy the following KKT conditions are optimal to the
primal and dual and the duality gap is 0.

gi (x̄) ≤ 0 ∀ i = 1, . . . , l

hi (x̄) = 0∀ i = 1, . . . ,m

λ̄ ≥ 0

λ̄igi (x̄) = 0∀ i = 1, . . . ,m

∇xf (x̄) +
l∑

i=1

λ̄i∇xgi (x̄) +
m∑
i=1

µ̄i∇xhi (x̄) = 0
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Lecture Outline

1 Notation for Representing Networks

2 Optimality Conditions

3 Label Correcting Algorithms

4 Label Setting Algorithms
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Lecture Outline

Notation for Representing Networks
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Notation for Representing Networks
Introduction

Before attempting to find equilibrium solutions, we need to represent
a physical traffic network in a form that can be handled mathemat-
ically and by a computer.

We will also need methods to compute shortest paths efficiently
because the equilibrium principle assumes that users always try to
select shortest paths.
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Notation for Representing Networks
Graphs

A graph is a collection of nodes and arcs.

Nodes in a traffic network are junctions or intersections. Arcs are the

roadway links connecting adjacent junctions.

Lecture 5 Notation and Shortest Path Algorithms



8/62

Notation for Representing Networks
Graphs

Nodes are sometimes referred to as vertices. Arcs are also called links or
edges.

Graphs can either be directed or undirected.
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Directed Graph
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Undirected Graph

Transportation networks are almost always represented using directed graphs.

Undirected graphs are used to represent other networks such as social net-

works.
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Notation for Representing Networks
Graphs

Denote a graph using G = (N,A), where N is the set of nodes and A is the set
of arcs. An arc (i , j) ∈ A connects a tail node i to a head node j .

We’ll use n and m to denote the number of nodes and arcs respectively.

Given a node i , the set of nodes {j : (i , j) ∈ A} are called downstream nodes
and the arcs connecting i to them are called downstream arcs. We can similarly
define upstream nodes and arcs.

In addition, the nodes and arcs in a graph can have attributes

I Cost

I Travel time

I Demand between pairs of nodes

I Fixed costs at junctions (signal delays)
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Notation for Representing Networks
Graphs

Consider the following 6 node and 9 arc graph. Suppose the values
next to the arcs indicate travel times.
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How do we store this information mathematically or on a computer?
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Notation for Representing Networks
Matrix Notation

Node-node adjacency matrix:

1 2 3 4 5 6


1 0 1 1 0 0 0
2 0 0 1 1 0 0
3 0 0 0 1 1 0
4 0 0 0 0 0 1
5 0 0 0 1 0 1
6 0 0 0 0 0 0

1 2 3 4 5 6


1 0 6 4 0 0 0
2 0 0 2 2 0 0
3 0 0 0 1 2 0
4 0 0 0 0 0 7
5 0 0 0 1 0 3
6 0 0 0 0 0 0

I Pros: Easy to check if there is an arc between two nodes

I Cons: Many entries are 0s and the storage requirements are high.
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Notation for Representing Networks
Matrix Notation

Node-arc incidence matrix:

(1, 2) (1, 3) (2, 3) (2, 4) (3, 4) (3, 5) (4, 6) (5, 4) (5, 6)


1 1 1 0 0 0 0 0 0 0
2 −1 0 1 1 0 0 0 0 0
3 0 −1 −1 0 1 1 0 0 0
4 0 0 0 −1 −1 0 1 −1 0
5 0 0 0 0 0 −1 0 1 1
6 0 0 0 0 0 0 −1 0 −1

The travel times can be stored in another vector of size equal to the
number of arcs.

I Pros: Has a special structure (exactly one +1 and -1 in each
column). We’ll see why this is useful later.

I Cons: Storage is again an issue.
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Notation for Representing Networks
Adjacency List/Set

Adjacency List:

1: 2, 3
2: 3, 4
3: 4, 5
4: 6
5: 4, 6
6:

1: (2,6), (3,4)
2: (3,2), (4,2)
3: (4,1), (5,2)
4: (6,7)
5: (4,1), (6,3)
6:

I Pros: Compact way to handle data.

I Cons: Retrieving data of a particular arc requires scanning the
adjacency list. Implementation is not trivial.
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Lecture Outline

Optimality Conditions
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Optimality Conditions
The Shortest Path Problem

The shortest path problem is to find the optimal distance/time/cost
(and the path) to a node from an origin r .

Let µi denote the distance label which denotes the cost of a path
from the source r to node i . By construction, µr = 0.

Think of these as our decision variables. We can then try to find the
necessary and sufficient conditions for the optimality of the labels.
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Optimality Conditions
Necessary and Sufficient Conditions for Labels

Proposition (Necessary conditions)

If a vector of labels µ are the shortest path distances

µj ≤ µi + tij ∀ (i , j) ∈ A

Proof.

Trivial (by contradiction). �
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Optimality Conditions
Necessary and Sufficient Conditions for Labels

Proposition (Sufficient conditions)

Labels µ that denote the lengths of paths from r to different nodes and
satisfy µj ≤ µi + tij ∀ (i , j) ∈ A are the shortest path distances.

Proof.

Let P = r = i1 − i2 − . . .− ik = s be any path from r to s. Let its length
be µs . Since the µs satisfy the above inequality,

µik ≤ µik−1
+ tik−1ik

µik−1
≤ µik−2

+ tik−2ik−1

...

µi2 ≤ µi1 + ti1i2

Adding the above inequalities, µs ≤ µr +
∑

(i,j)∈P tij =
∑

(i,j)∈P tij .
Therefore, µs is a lower bound for the cost of a path from r to s. Since,
it is the length of some path from r to s, it is also an upper bound. �
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Optimality Conditions
Necessary and Sufficient Conditions for Paths

The necessary and sufficient conditions are also commonly referred
to as Bellman’s Optimality Conditions.

The earlier proposition deals with the optimality of the distance
labels. What are the optimality conditions for a path?
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Optimality Conditions
Necessary and Sufficient Conditions for Paths

Proposition (Necessary and Sufficient Conditions)

Let µ represent a vector of shortest path distances. A path P from
r to s is optimal iff µj = µi + tij ∀ (i , j) ∈ P.

The proof is very similar and uses the subpath optimality property.
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Optimality Conditions
Linear Programming Formulation

Let us try to find the shortest path between nodes 1 and 6 using an
optimization framework.
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Identify the

I Objective

I Decision Variables

I Constraints
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Optimality Conditions
Linear Programming Formulation

I Objective
Clearly, the objective is to reduce the travel time.

I Decision Variables
Let us define a binary variable xij which is 1 if link (i , j)
belongs to the shortest path and is 0 otherwise.

I Constraints
We need 1 unit of flow (or 1 vehicle) to enter node 1 and
leave node 6. When it passes through intermediate nodes
‘what goes in must come out’.
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Optimality Conditions
Linear Programming Formulation

The objective is 4x13 + 6x12 + 2x23 + . . .+ 7x46 + 3x56
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Flow conservation constraints:

I Node 1: x12 + x13 = 1

I Node 2: x12 = x23 + x24

I Node 3: x13 + x23 = x34 + x35

...

I Node 6: x46 + x56 = 1

In addition, we have integrality constraints, i.e., xij ∈ {0, 1} ∀ (i , j) ∈ A.
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Optimality Conditions
Linear Programming Formulation

Let’s write the equality constraints in the following form.

x12 + x13 = 1

−x12 +x23 + x24 = 0

− x13 −x23 +x34 + x35 = 0

− x24 −x34 +x46 − x54 = 0

− x35 + x54 +x56 = 0

−x46 −x56 = −1

Do you notice any structure in these constraints?


1 1 0 0 0 0 0 0 0
−1 0 1 1 0 0 0 0 0
0 −1 −1 0 1 1 0 0 0
0 0 0 −1 −1 0 1 −1 0
0 0 0 0 0 −1 0 1 1
0 0 0 0 0 0 −1 0 −1





x12

x13

x23

x24

x34

x35

x46

x54

x56
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Optimality Conditions
Linear Programming Formulation

Generalizing this,

𝑖

𝑗

ℎ

The equality constraints can be written as

∑
j :(i ,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = r

−1 if i = s

0 otherwise
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Optimality Conditions
Linear Programming Formulation

Hence, the shortest path problem takes the form

min
∑

(i ,j)∈A

tijxij

s.t.
∑

j :(i ,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = r

−1 if i = s

0 otherwise

xij ∈ {0, 1} ∀ (i , j) ∈ A

Recall that the equality constraints can be written as Ax = b, where
A is an n ×m matrix, x is a m × 1 vector, and b is a n × 1 vector.
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Optimality Conditions
Linear Programming Formulation

Luckily, the node-arc incidence matrix A satisfies a property called total
unimodularity because it has exactly one +1 and one −1 in each column.

If the constraint matrix has this property, one can replace the integer

constraints with inequalities, solve the problem as an LP, and get an integer

optimal solution!

min
∑

(i ,j)∈A

tijxij

s.t.
∑

j :(i ,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = r

−1 if i = s

0 otherwise

0 ≤ xij ≤ 1 ∀ (i , j) ∈ A
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Optimality Conditions
Linear Programming Formulation

Convert the LP into standard form and write the KKT Conditions
for the shortest path problem.

Notice that the upper bounds xij ≤ 1∀ (i , j) ∈ A are redundant.
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Optimality Conditions
Linear Programming Formulation

Rope Model for Shortest Paths

Lecture 5 Notation and Shortest Path Algorithms
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Optimality Conditions
Linear Programming Formulation

Let’s start with the last set of KKT conditions. Gradient of the La-
grangian vanishes:

L(x,λ,µ) =
∑

(i,j)∈A

tijxij +
∑

(i,j)∈A

λij(−xij)+
∑
i∈N

µi

 ∑
j :(i,j)∈A

xij −
∑

h:(h,i)∈A

xhi − bi



∂L
∂xij

= tij − λij + µi − µj = 0

⇒ λij = tij + µi − µj

λs are also called reduced costs.
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Optimality Conditions
Linear Programming Formulation

Primal feasibility:

Ax = b

0 ≤ xij ≤ 1∀ (i , j) ∈ A

Dual feasibility:

λij ≥ 0 ∀ (i , j) ∈ A

Complementary Slackness:

λijxij = 0∀ (i , j) ∈ A

Gradient of the Lagrangian vanishes:

λij = tij + µi − µj ∀, (i , j) ∈ A

From the above conditions, interpreting µs as the distance labels, we get

the Bellman’s conditions: µj ≤ tij + µi and if xij = 1⇒ µj = µi + tij !!!
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Optimality Conditions
Linear Programming Formulation

There are efficient algorithms to solve LPs. But for network prob-
lems, we can almost always construct algorithms which are much
faster.
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Lecture Outline

Label Correcting Algorithms

Lecture 5 Notation and Shortest Path Algorithms



33/62

Label Correcting Algorithms
Introduction

Recall the optimal conditions for shortest path distances:

µj ≤ tij + µi ∀ (i , j) ∈ A

The general approach in shortest path algorithms:

1 Initialize the labels of all nodes except the origin to ∞. The label of
the origin is set to 0.

2 The labels are upper bounds to the shortest distance. Iteratively
reduce them until the above optimality conditions are satisfied.

Lecture 5 Notation and Shortest Path Algorithms
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Label Correcting Algorithms
Introduction

In most algorithms, while finding the shortest distance from an origin r to
some node in the network, we get the shortest distances to all the other
nodes for free.

Such methods in which we fan out from the origin are called one-to-all
algorithms. We also keep track of a predecessor labels π, which for each
node i gives its upstream node in a path of length µi .

We almost always never store paths. Upon termination, the predecessor
labels are used to re-construct the optimal path.

Alternately, we can construct all-to-one algorithms which find the shortest

paths from all nodes to a destination s.

Lecture 5 Notation and Shortest Path Algorithms
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Label Correcting Algorithms
Generic Label Correcting Algorithm

In the most naive version of a label correcting algorithm,

I Scan each arc in the network and if the optimality condition is
violated, update the label of the head node.

I Repeat until no arc violates the optimality condition.

Generic Label Correcting(G , r)

Step 1: Initialize
µr ← 0, πr ← r
µi ←∞, πi ← −1 ∀ i ∈ N\{r}

Step 2:
while Some arc (i , j) satisfies µj > µi + tij do

µj ← µi + tij
πj ← i

end while

Lecture 5 Notation and Shortest Path Algorithms
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Label Correcting Algorithms
Generic Label Correcting Algorithm

We can formally prove that the generic label correcting method works.

I Show that it terminates

I When it terminates, prove that optimality conditions are met.
(Trivial)

From an implementation standpoint, one option to find an arc that violates

the optimality conditions is to scan all the arcs in a fixed order. But this

technique isn’t intelligent.

Can we do better?
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Label Correcting Algorithms
Modified Label Correcting Algorithms

Instead of scanning all arcs within each iteration, let’s keep a list of nodes
whose downstream arcs may violate the optimality criteria. Call this the
scan eligible list (SEL).

Pick a node i from this list and update the label of its downstream nodes
j : (i , j) ∈ A if the optimality conditions aren’t met. When µj is reduced
what happens to the labels of

I Downstream nodes of j

I Upstream nodes of j

Therefore, if there are any updates, add j to SEL. (Always?)
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Label Correcting Algorithms
Modified Label Correcting Algorithms

Modified Label Correcting(G , r)

Step 1: Initialize
µr ← 0, πr ← r
µi ←∞, πi ← −1 ∀ i ∈ N\{r}
SEL ← {r}

Step 2:
while SEL 6= ∅ do

Remove i from SEL
for j : (i , j) ∈ A do

if µj > µi + tij then
µj ← µi + tij
πj ← i
if j /∈ SEL then add j to SEL

end if
end for

end while

Lecture 5 Notation and Shortest Path Algorithms
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Label Correcting Algorithms
Modified Label Correcting Algorithms

How do we identify

1 Optimal paths

2 Nodes that are not reachable

Lecture 5 Notation and Shortest Path Algorithms
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example
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Label Correcting Algorithms
Example

This method of using a SEL is much faster than the generic label
correcting algorithm.

Can we do better?
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Lecture Outline

Label Setting Algorithms
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Label Setting Algorithms
Introduction

It so happens that when arc costs are non-negative, we can find the
shortest paths in a shorter way!

These methods, also called label setting algorithms operate similarly
but at every iteration, the label of one node is set (i.e., it is optimal).

In contrast, label correcting methods are guaranteed to give optimal
labels only after termination.
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Label Setting Algorithms
Dijkstra’s Method

Edsger W. Dijkstra
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Label Setting Algorithms
Dijkstra’s Method

The set of nodes can be divided into two groups. S is used to
represent the nodes whose labels are set. The remaining nodes are
denoted using S̄ .

The labels of nodes in S are optimal and those in S̄ are upper
bounds.

In each iteration, we pick a node in S̄ with the lowest label and
move it to S and scan its downstream arcs.

Lecture 5 Notation and Shortest Path Algorithms
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Label Setting Algorithms
Dijkstra’s Method

Dijkstra’s Algorithm(G , r)

Step 1: Initialize
S ← ∅, S̄ ← N
µr ← 0, πr ← r
µi ←∞, πi ← −1 ∀ i ∈ N\{r}

Step 2:
while S̄ 6= ∅ do

i ← arg minj∈S̄ µj

S ← S ∪ {i}, S̄ ← S̄\{i}
for j : (i , j) ∈ A do

if µj > µi + tij then
µj ← µi + tij
πj ← i

end if
end for

end while

Lecture 5 Notation and Shortest Path Algorithms
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Label Setting Algorithms
Example

1

4

5

2

3

6

2

4 3

7

1

2

12

6

0

∞

1

∞

−1

∞ −1

∞ −1

∞ −1

−1

S = ∅, S̄ = {1, 2, . . . , 6}

Lecture 5 Notation and Shortest Path Algorithms



54/62

Label Setting Algorithms
Example
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Label Setting Algorithms
Example
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Label Setting Algorithms
Example
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S = {1, 3, 4}, S̄ = {2, 5, 6}
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Label Setting Algorithms
Example
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Label Setting Algorithms
Example
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Label Setting Algorithms
Example
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Label Setting Algorithms
Computational Performance

Label setting algorithms terminate after n iterations (assuming all nodes
are reachable) because in each step, we move a node from S̄ to S .

Label correcting algorithms can take more iterations since nodes can re-
enter the SEL. But within each iteration label setting algorithms take more
time. (Why?)

It is not so difficult to derive worst case complexity bounds for both algo-

rithms for different implementations.
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Supplementary Reading

I Boyles, Chapter 2

I Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993).
Network flows: theory, algorithms, and applications.
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Your Moment of Zen

Sometimes we don’t need an algorithm to find the shortest path...
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