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Previously on Traffic Network Equilibrium...

Definition (Convex Set)

A set X is convex iff the convex combination of any two points in the set
also belongs to the set. Mathematically,

X ⊆ Rn is convex⇔ ∀ x, y ∈ X and ∀λ ∈ [0, 1], λx + (1− λ)y ∈ X
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Previously on Traffic Network Equilibrium...

Definition (Cone)

A set C is called a cone if for every x ∈ C and λ ≥ 0, λx ∈ C .

𝟎𝟎
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𝒚

𝒙

Definition (Convex Cone)

A set C is called a convex cone if it is convex and a cone, i.e., ∀ x, y ∈ C
and λ1, λ2 ≥ 0, λ1x + λ2y ∈ C .
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Previously on Traffic Network Equilibrium...

Definition (Convexity of General Functions)

A function f : X ⊆ Rn → R is convex if ∀ x, y ∈ X , λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Definition (Convexity of Differentiable Functions)

A differentiable function f : X ⊆ Rn → R is convex iff

f (y) ≥ f (x) +∇f (x)T (y− x)∀ x, y ∈ X

Definition (Convexity of Twice-Differentiable Functions)

A twice-differentiable function f : X ⊆ Rn → R is convex iff
∇2f (x) � 0 ∀ x ∈ X .
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Previously on Traffic Network Equilibrium...

For unconstrained problems,

Proposition (Necessary Conditions)

x∗ is a local minimum of a differentiable function f : X ⊂ Rn → R
⇒ ∇f (x∗) = 0

Proposition (Necessary and Sufficient Conditions)

x∗ is a global minimum of a differentiable convex function
f : X ⊂ Rn → R ⇔ ∇f (x∗) = 0
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Lecture Outline

1 Duality

2 KKT Conditions

3 Exercises
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Lecture Outline

Duality
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Duality
Primal Problem

Let’s call the optimization problem in the standard form the primal. Sup-
pose that f ∗ is an optimal solution to the primal.

Definition (Primal Problem)

min
x

f (x)

s.t. gi (x) ≤ 0 ∀ i = 1, 2, . . . , l

hi (x) = 0 ∀ i = 1, 2, . . . ,m

I For now, let’s not make any assumptions on convextiy.

I Also, recall that X is the set of feasible points that satisfy the
implicit constraints.
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Duality
Primal Problem

Note down the following example. We will use it to illustrate the
concepts defined in this lecture.

min
x1,x2

x21 + x22

s.t. x21 + x22 ≤ 5

x1 + 2x2 = 4

x1, x2 ≥ 0
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Duality
Lagrangian

Definition (Lagrangian)

The Lagrangian function L : X ×Rl ×Rm → R of the primal is defined as

L(x,λ,µ) = f (x) +
l∑

i=1

λigi (x) +
m∑
i=1

µihi (x)

The λs and µs are referred to as Lagrange multipliers.

I If the Lagrange multipliers are zeros, we recover the primal objective.

I Otherwise, we may interpret the Lagrangian as the objective plus a
penalty (reward) for violating (satisfying) a constraint.
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Duality
Dual Function

Definition (Dual Function)

We define the dual function F : Rl × Rm → R as

F(λ,µ) = inf
x∈X
L(x,λ,µ)

= inf
x∈X

(
f (x) +

l∑
i=1

λigi (x) +
m∑
i=1

µihi (x)

)
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Duality
Dual Function

Proposition (Concavity)

The dual function F is concave in (λ,µ).

𝜇

𝜆

ℒ (𝒙, 𝜆, 𝜇)

ℒ (𝒙′, 𝜆, 𝜇)

ℒ (𝒙′′, 𝜆, 𝜇)

For each x, the Lagrangian is an affine function in (λ,µ) and the infimum

of affine functions is concave.
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Duality
Dual Function

Proposition (Lower Bound)

If λ ≥ 0, then F(λ,µ) is a lower bound on f ∗ for any (λ,µ).

Proof.

Consider a primal feasible solution x̄. Since, it is feasible, hi (x̄) = 0 for all
i = 1, . . . ,m. Hence, the Lagrangian at x̄ can be written as

L(x̄,λ,µ) = f (x̄) +
l∑

i=1

λigi (x̄)

≤ f (x̄)

The last inequality is true since λ ≥ 0, gi (x̄) ≤ 0∀ i = 1, . . . , l . Now consider
the dual function

F(λ,µ) = inf
x∈X
L(x,λ,µ)

≤ L(x̄,λ,µ) ≤ f (x̄) �
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Duality
Dual Problem

Given a (λ,µ) such that λ ≥ 0, you can use dual function and generate a
lower bound to the primal. Can we find the best possible lower bound?

Definition (Dual Problem)

max
λ,µ

F(λ,µ)

s.t. λ ≥ 0

The Lagrange multipliers are also thus called dual variables.

This is a very powerful result! Using a convex program (Why?) we can
generate a lower bound to the primal problem (even if the primal is not
convex)!!

And if we know an upper bound, we can bound the optimal value. (Do we
know any upper bound?)
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Duality
Recap

I Primal Problem: min f (x) s.t. gi (x) ≤ 0, hi (x) = 0

I Lagrangian: L(x,λ,µ) = f (x) +
∑
λigi (x) +

∑
µihi (x)

I Dual Function: F(λ,µ) = inf L(x,λ,µ)

I Dual Problem: maxF(λ,µ) s.t. λ ≥ 0
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Duality
Weak and Strong Duality

Suppose f ∗ and F∗ denote the optimal values of the primal and dual
problems. The term f ∗ −F∗ is referred to as duality gap.

Definition (Weak Duality)

Weak duality holds if F∗ ≤ f ∗. (Always true)

Definition (Strong Duality)

Strong duality is said to hold if F∗ = f ∗.
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Duality
Weak and Strong Duality

When does strong duality hold? In many cases, some of which do not
even require convexity! The conditions (called constraint qualifications)
however are usually complicated and we do not need to know much about
it for this course.

Let’s look at one instance called Slater’s condition. If our primal was of
the form

min
x

f (x)

s.t. gi (x) ≤ 0 ∀ i = 1, 2, . . . , l

Ax = b

where f and gs are all convex and there exist a feasible x such that gi (x) <

0∀ i = 1, . . . l , then strong duality holds.
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Duality
Complementary Slackness

Suppose strong duality holds. Let x∗ be optimal to the primal problem,
and (λ∗,µ∗) be optimal to the dual problem.

f (x∗) = F(λ∗,µ∗)

= inf
x∈X

(
f (x) +

l∑
i=1

λ∗i gi (x) +
m∑
i=1

µ∗i hi (x)

)

≤ f (x∗) +
l∑

i=1

λ∗i gi (x∗) +
�
��

�
��*

0
m∑
i=1

µ∗i hi (x∗)

⇒
l∑

i=1

λ∗i gi (x∗) ≥ 0, but from primal and dual feasibility,
l∑

i=1

λ∗i gi (x∗) ≤ 0.

∴
l∑

i=1

λ∗i gi (x∗) = 0
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Duality
Complementary Slackness

Recall that λ∗i ≥ 0 and gi (x∗) ≤ 0. Hence,
∑l

i=1 λ
∗
i gi (x∗) = 0

implies that the following complementary slackness conditions
must hold

λ∗i gi (x∗) = 0∀ i = 1, . . . , l

Which implies

I λ∗i > 0⇒ gi (x∗) = 0

I gi (x∗) < 0⇒ λ∗i = 0
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Duality
Complementary Slackness

Proposition

Let x∗ and (λ∗,µ∗) be optimal to the primal and dual respectively. Suppose
strong duality holds. Then ∇xL(x∗,λ∗,µ∗) = 0

Proof.

L(x∗,λ∗,µ∗) = f (x∗) +
��

��
��*

0
l∑

i=1

λ∗i gi (x∗) +
��

�
��
�*0

m∑
i=1

µ∗i hi (x∗)

= f (x∗)

From strong duality,

f (x∗) = F(λ∗,µ∗) = inf
x∈X
L(x,λ∗,µ∗)

Hence, x minimizes L(x,λ∗,µ∗). Therefore, ∇xL(x∗,λ∗,µ∗) = 0 �
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Duality
Recap

I Primal Problem: min f (x) s.t. gi (x) ≤ 0, hi (x) = 0

I Lagrangian: L(x,λ,µ) = f (x) +
∑
λigi (x) +

∑
µihi (x)

I Dual Function: F(λ,µ) = inf L(x,λ,µ)

I Dual Problem: maxF(λ,µ) s.t. λ ≥ 0

I Weak Duality: F∗ ≤ f ∗

I Strong Duality: F∗ = f ∗

I Complementary Slackness: F∗ = f ∗ ⇒ λ∗i gi (x∗) = 0
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Lecture Outline

KKT Conditions
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KKT Conditions
History Break

Karush-Kuhn-Tucker (KKT) conditions are named after William Karush, Harold
Kuhn, and Albert Tucker.

William Karush Harold Kuhn Albert Tucker

These were popularly known as Kuhn-Tucker conditions after the authors who
discovered them in 1951 but Karush had derived similar results in his master’s
thesis in 1939. See [PDF] for a historical account of the KKT conditions.
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KKT Conditions
History Break

Incidentally, Albert Tucker was the one who formalized ‘Prisoner’s Dilemma’
and also produced these two PhDs, both of whom won the Nobel in eco-
nomics.

John Nash Lloyd Shapley

Although they never worked on traffic, we’ll see some of their connections

with this course later.
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KKT Conditions
Necessary Conditions

The results that we have derived so far are essentially the necessary
conditions for optimality.
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KKT Conditions
Necessary Conditions

Proposition (Necessary KKT Conditions)

Assuming strong duality holds, any x∗ and (λ∗,µ∗) that are optimal for the
primal and dual problems must satisfy

I Primal Feasibility

gi (x∗) ≤ 0∀ i = 1, . . . , l

hi (x∗) = 0∀ i = 1, . . . ,m

I Dual Feasibility
λ∗ ≥ 0

I Complementary Slackness

λ∗i gi (x∗) = 0∀ i = 1, . . . ,m

I Gradient of the Lagrangian vanishes

∇xf (x∗) +
l∑

i=1

λ∗i ∇xgi (x∗) +
m∑
i=1

µ∗i ∇xhi (x∗) = 0
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KKT Conditions
Sufficient Conditions

As is the case with unconstrained optimization, any x and (λ,µ)
that satisfy the KKT conditions are not optimal to the primal and
dual. We need additional assumptions for them to be sufficient.
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KKT Conditions
Sufficient Conditions

Proposition (Sufficient KKT Conditions)

Suppose f , gi , and hi are all differentiable and convex. Then, any x̄ and (λ̄, µ̄)
that satisfy the following KKT conditions are optimal to the primal and dual
and the duality gap is 0.

gi (x̄) ≤ 0 ∀ i = 1, . . . , l

hi (x̄) = 0∀ i = 1, . . . ,m

λ̄ ≥ 0

λ̄igi (x̄) = 0∀ i = 1, . . . ,m

∇xf (x̄) +
l∑

i=1

λ̄i∇xgi (x̄) +
m∑
i=1

µ̄i∇xhi (x̄) = 0
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KKT Conditions
Visualizing KKT Conditions

Suppose we wish to optimize the following problem.

min
x

f (x)

s.t. g1(x) ≤ 0

g2(x) ≤ 0

L(x,λ) = f (x) + λ1g1(x) + λ2g2(x) and one of the KKT conditions is

∇f (x) + λ1∇g1(x) + λ2∇g2(x) = 0

⇒ −∇f (x) = λ1∇g1(x) + λ2∇g2(x)

Let’s try to relate this to our normal cone version of the optimality condi-

tions.
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KKT Conditions
Visualizing KKT Conditions

Suppose the feasible region looks as shown below

𝑔1 𝒙 ≤ 0
𝑔2 𝒙 ≤ 0

𝒳

The boundaries of the constraints are g1(x) = 0 and g2(x) = 0, and
the x values satisfying these points are the level sets of g1 and g2.
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KKT Conditions
Visualizing KKT Conditions

Therefore, ∇g1(x∗) and ∇g2(x∗) are orthogonal to boundaries.

𝑔1 𝒙 ≤ 0
𝑔2 𝒙 ≤ 0

𝒳

𝛻𝑔1 𝒙
∗

𝛻𝑔2 𝒙
∗

−𝛻𝑓 𝒙∗

𝒙∗

Since −∇f (x∗) = λ1∇g1(x∗) + λ2∇g2(x∗), it belongs to the cone formed

by ∇g1(x∗) and ∇g2(x∗), which is also the normal cone at x∗.
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KKT Conditions
Summary

Unconstrained Constrained
Necessary
Conditions x∗ is optimal⇒ ∇f (x∗) = 0 x∗ is primal optimal and (λ∗,µ∗)

is dual optimal and strong dual-
ity holds ⇒ KKT conditions are
satisfied

Sufficient
Conditions ∇f (x∗) = 0 for a convex

function ⇒ x∗ is optimal
Objective and constraints involve
convex functions and x̄ and (λ̄, µ̄)
satisfy KKT conditions ⇒ x̄ and
(λ̄, µ̄) are optimal for the primal
and dual and the duality gap is 0
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Lecture Outline

Exercises
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Exercises
Exercise 1

Using KKT conditions solve

min
x1,x2

(x1 − 1)2 + x2 − 2

s.t. x1 + x2 ≤ 2

x2 − x1 = 1

I Are the objective and constraints convex?

I Is the solution optimal?
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Exercises
Exercise 2

Write the KKT conditions for the following problem

min
x

f (x)

s.t. x ≥ 0
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Exercises
Exercise 3

Write the KKT conditions for the following problem

min
x

f (x)

s.t. Ax = b

x ≥ 0

Where Ax = b is

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

am1x1 + am2x2 + . . .+ amnxn = bm
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Supplementary Reading

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cam-
bridge university press. [PDF]
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Your Moment of Zen
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