CE 272
 Traffic Network Equilibrium

Lecture 3
 Review of Convex Optimization - Part II

Previously on Traffic Network Equilibrium...

Definition (Convex Set)

A set X is convex iff the convex combination of any two points in the set also belongs to the set. Mathematically,

$$
X \subseteq \mathbb{R}^{n} \text { is convex } \Leftrightarrow \forall \mathbf{x}, \mathbf{y} \in X \text { and } \forall \lambda \in[0,1], \lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in X
$$

Previously on Traffic Network Equilibrium...

Definition (Cone)

A set C is called a cone if for every $\mathbf{x} \in C$ and $\lambda \geq 0, \lambda \mathbf{x} \in C$.

Definition (Convex Cone)

A set C is called a convex cone if it is convex and a cone, i.e., $\forall \mathbf{x}, \mathbf{y} \in C$ and $\lambda_{1}, \lambda_{2} \geq 0, \lambda_{1} \mathbf{x}+\lambda_{2} \mathbf{y} \in C$.

Previously on Traffic Network Equilibrium...

Definition (Convexity of General Functions)

A function $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\forall \mathbf{x}, \mathbf{y} \in X, \lambda \in[0,1]$,

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})
$$

Definition (Convexity of Differentiable Functions)

A differentiable function $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex iff

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \forall \mathbf{x}, \mathbf{y} \in X
$$

Definition (Convexity of Twice-Differentiable Functions)

A twice-differentiable function $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex iff $\nabla^{2} f(\mathbf{x}) \succeq 0 \forall \mathbf{x} \in X$.

Previously on Traffic Network Equilibrium...

For unconstrained problems,

Proposition (Necessary Conditions)

\mathbf{x}^{*} is a local minimum of a differentiable function $f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$
$\Rightarrow \nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$

Proposition (Necessary and Sufficient Conditions)

\mathbf{x}^{*} is a global minimum of a differentiable convex function
$f: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R} \Leftrightarrow \nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$

Lecture Outline

1 Duality
2 KKT Conditions
(3) Exercises

Lecture Outline

Duality

Duality

Let's call the optimization problem in the standard form the primal. Suppose that f^{*} is an optimal solution to the primal.

Definition (Primal Problem)

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } \\
& g_{i}(\mathbf{x}) \leq 0 \\
& h_{i}(\mathbf{x})=0
\end{aligned}
$$

$$
\begin{array}{r}
\forall i=1,2, \ldots, l \\
\forall i=1,2, \ldots, m
\end{array}
$$

- For now, let's not make any assumptions on convextiy.
- Also, recall that X is the set of feasible points that satisfy the implicit constraints.

Duality

Note down the following example. We will use it to illustrate the concepts defined in this lecture.

$$
\begin{array}{ll}
\min _{x_{1}, x_{2}} & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 5 \\
& x_{1}+2 x_{2}=4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Duality

Definition (Lagrangian)

The Lagrangian function $\mathcal{L}: X \times \mathbb{R}^{\prime} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ of the primal is defined as

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{\prime} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{m} \mu_{i} h_{i}(\mathbf{x})
$$

The $\boldsymbol{\lambda} \mathrm{s}$ and $\boldsymbol{\mu} \mathrm{s}$ are referred to as Lagrange multipliers.

- If the Lagrange multipliers are zeros, we recover the primal objective.
- Otherwise, we may interpret the Lagrangian as the objective plus a penalty (reward) for violating (satisfying) a constraint.

Duality

Definition (Dual Function)

We define the dual function $\mathcal{F}: \mathbb{R}^{\prime} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ as

$$
\begin{aligned}
\mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu}) & =\inf _{\mathbf{x} \in X} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\
& =\inf _{\mathbf{x} \in X}\left(f(\mathbf{x})+\sum_{i=1}^{\prime} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{m} \mu_{i} h_{i}(\mathbf{x})\right)
\end{aligned}
$$

Duality

Proposition (Concavity)

The dual function \mathcal{F} is concave in $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

For each \mathbf{x}, the Lagrangian is an affine function in ($\boldsymbol{\lambda}, \boldsymbol{\mu}$) and the infimum of affine functions is concave.

Duality

Proposition (Lower Bound)

If $\boldsymbol{\lambda} \geq \mathbf{0}$, then $\mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu})$ is a lower bound on f^{*} for any $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

Proof.

Consider a primal feasible solution $\overline{\mathbf{x}}$. Since, it is feasible, $h_{i}(\overline{\mathbf{x}})=0$ for all $i=1, \ldots, m$. Hence, the Lagrangian at $\overline{\mathbf{x}}$ can be written as

$$
\begin{aligned}
\mathcal{L}(\overline{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) & =f(\overline{\mathbf{x}})+\sum_{i=1}^{I} \lambda_{i} g_{i}(\overline{\mathbf{x}}) \\
& \leq f(\overline{\mathbf{x}})
\end{aligned}
$$

The last inequality is true since $\boldsymbol{\lambda} \geq \mathbf{0}, g_{i}(\overline{\mathbf{x}}) \leq 0 \forall i=1, \ldots, l$. Now consider the dual function

$$
\begin{aligned}
\mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu}) & =\inf _{\mathbf{x} \in X} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\
& \leq \mathcal{L}(\overline{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq f(\overline{\mathbf{x}})
\end{aligned}
$$

Duality

Given a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ such that $\boldsymbol{\lambda} \geq \mathbf{0}$, you can use dual function and generate a lower bound to the primal. Can we find the best possible lower bound?

Definition (Dual Problem)

$$
\begin{aligned}
& \max _{\boldsymbol{\lambda}, \boldsymbol{\mu}} \mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu}) \\
& \text { s.t. } \boldsymbol{\lambda} \geq \mathbf{0}
\end{aligned}
$$

The Lagrange multipliers are also thus called dual variables.

This is a very powerful result! Using a convex program (Why?) we can generate a lower bound to the primal problem (even if the primal is not convex)!!

And if we know an upper bound, we can bound the optimal value. (Do we know any upper bound?)

Duality

- Primal Problem: $\min f(\mathbf{x})$ s.t. $g_{i}(\mathbf{x}) \leq 0, h_{i}(\mathbf{x})=0$
- Lagrangian: $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum \lambda_{i} g_{i}(\mathbf{x})+\sum \mu_{i} h_{i}(\mathbf{x})$
- Dual Function: $\mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\inf \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$
- Dual Problem: $\max \mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu})$ s.t. $\boldsymbol{\lambda} \geq \mathbf{0}$

Duality

Suppose f^{*} and \mathcal{F}^{*} denote the optimal values of the primal and dual problems. The term $f^{*}-\mathcal{F}^{*}$ is referred to as duality gap.

Definition (Weak Duality)

Weak duality holds if $\mathcal{F}^{*} \leq f^{*}$. (Always true)

Definition (Strong Duality)

Strong duality is said to hold if $\mathcal{F}^{*}=f^{*}$.

Duality

When does strong duality hold? In many cases, some of which do not even require convexity! The conditions (called constraint qualifications) however are usually complicated and we do not need to know much about it for this course.

Let's look at one instance called Slater's condition. If our primal was of the form

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } \\
& g_{i}(\mathbf{x}) \leq 0 \quad \forall i=1,2, \ldots, l \\
& \\
& \mathbf{A x}=\mathbf{b}
\end{aligned}
$$

where f and g s are all convex and there exist a feasible \mathbf{x} such that $g_{i}(\mathbf{x})<$ $0 \forall i=1, \ldots l$, then strong duality holds.

Duality

Complementary Slackness

Suppose strong duality holds. Let \mathbf{x}^{*} be optimal to the primal problem, and $\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)$ be optimal to the dual problem.

$$
\begin{aligned}
f\left(\mathbf{x}^{*}\right) & =\mathcal{F}\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) \\
& =\inf _{x \in X}\left(f(\mathbf{x})+\sum_{i=1}^{1} \lambda_{i}^{*} g_{i}(\mathbf{x})+\sum_{i=1}^{m} \mu_{i}^{*} h_{i}(\mathbf{x})\right) \\
& \leq f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{1} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \mu_{i}^{*} h_{i}\left(\mathbf{x}^{*}\right)
\end{aligned}
$$

$\Rightarrow \sum_{i=1}^{\prime} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \geq 0$, but from primal and dual feasibility, $\sum_{i=1}^{\prime} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq 0$.

$$
\therefore \sum_{i=1}^{\prime} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0
$$

Duality

Recall that $\lambda_{i}^{*} \geq 0$ and $g_{i}\left(\mathbf{x}^{*}\right) \leq 0$. Hence, $\sum_{i=1}^{l} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0$ implies that the following complementary slackness conditions must hold

$$
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0 \forall i=1, \ldots, l
$$

Which implies

- $\lambda_{i}^{*}>0 \Rightarrow g_{i}\left(\mathbf{x}^{*}\right)=0$
- $g_{i}\left(\mathbf{x}^{*}\right)<0 \Rightarrow \lambda_{i}^{*}=0$

Duality

Proposition

Let \mathbf{x}^{*} and $\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)$ be optimal to the primal and dual respectively. Suppose strong duality holds. Then $\nabla_{\mathrm{x}} \mathcal{L}\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)=\mathbf{0}$

Proof.

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right) & =f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{1} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \mu_{i}^{*} h_{i}\left(\mathbf{x}^{*}\right) \\
& =f\left(\mathbf{x}^{*}\right)
\end{aligned}
$$

From strong duality,

$$
f\left(\mathbf{x}^{*}\right)=\mathcal{F}\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)=\inf _{x \in X} \mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)
$$

Hence, \mathbf{x} minimizes $\mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)$. Therefore, $\nabla_{\mathrm{x}} \mathcal{L}\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)=\mathbf{0}$

Duality

Recap

- Primal Problem: $\min f(\mathbf{x})$ s.t. $g_{i}(\mathbf{x}) \leq 0, h_{i}(\mathbf{x})=0$
- Lagrangian: $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum \lambda_{i} g_{i}(\mathbf{x})+\sum \mu_{i} h_{i}(\mathbf{x})$
- Dual Function: $\mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu})=\inf \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$
- Dual Problem: $\max \mathcal{F}(\boldsymbol{\lambda}, \boldsymbol{\mu})$ s.t. $\boldsymbol{\lambda} \geq \mathbf{0}$
- Weak Duality: $\mathcal{F}^{*} \leq f^{*}$
- Strong Duality: $\mathcal{F}^{*}=f^{*}$
- Complementary Slackness: $\mathcal{F}^{*}=f^{*} \Rightarrow \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0$

Lecture Outline

KKT Conditions

KKT Conditions

History Break

Karush-Kuhn-Tucker (KKT) conditions are named after William Karush, Harold Kuhn, and Albert Tucker.

William Karush

Harold Kuhn

Albert Tucker

These were popularly known as Kuhn-Tucker conditions after the authors who discovered them in 1951 but Karush had derived similar results in his master's thesis in 1939. See [PDF] for a historical account of the KKT conditions.

KKT Conditions

History Break

Incidentally, Albert Tucker was the one who formalized 'Prisoner's Dilemma' and also produced these two PhDs, both of whom won the Nobel in economics.

John Nash

Lloyd Shapley

Although they never worked on traffic, we'll see some of their connections with this course later.

KKT Conditions

Necessary Conditions

The results that we have derived so far are essentially the necessary conditions for optimality.

KKT Conditions

Necessary Conditions

Proposition (Necessary KKT Conditions)

Assuming strong duality holds, any \mathbf{x}^{*} and $\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)$ that are optimal for the primal and dual problems must satisfy

- Primal Feasibility

$$
\begin{aligned}
& g_{i}\left(\mathbf{x}^{*}\right) \leq 0 \forall i=1, \ldots, l \\
& h_{i}\left(\mathbf{x}^{*}\right)=0 \forall i=1, \ldots, m
\end{aligned}
$$

- Dual Feasibility

$$
\lambda^{*} \geq 0
$$

- Complementary Slackness

$$
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0 \forall i=1, \ldots, m
$$

- Gradient of the Lagrangian vanishes

$$
\nabla_{\mathrm{x}} f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{1} \lambda_{i}^{*} \nabla_{\mathrm{x}} g_{i}\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \mu_{i}^{*} \nabla_{\mathrm{x}} h_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

KKT Conditions

Sufficient Conditions

As is the case with unconstrained optimization, any \mathbf{x} and $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ that satisfy the KKT conditions are not optimal to the primal and dual. We need additional assumptions for them to be sufficient.

KKT Conditions

Proposition (Sufficient KKT Conditions)

Suppose f, g_{i}, and h_{i} are all differentiable and convex. Then, any $\overline{\mathrm{x}}$ and $(\overline{\boldsymbol{\lambda}}, \bar{\mu})$ that satisfy the following KKT conditions are optimal to the primal and dual and the duality gap is 0 .

$$
\begin{gathered}
g_{i}(\overline{\mathbf{x}}) \leq 0 \forall i=1, \ldots, l \\
h_{i}(\overline{\mathbf{x}})=0 \forall i=1, \ldots, m \\
\overline{\boldsymbol{\lambda}} \geq \mathbf{0} \\
\bar{\lambda}_{i} g_{i}(\overline{\mathbf{x}})=0 \forall i=1, \ldots, m \\
\nabla_{\mathrm{x}} f(\overline{\mathbf{x}})+\sum_{i=1}^{\prime} \bar{\lambda}_{i} \nabla_{\mathrm{x}} g_{i}(\overline{\mathbf{x}})+\sum_{i=1}^{m} \bar{\mu}_{i} \nabla_{\mathrm{x}} h_{i}(\overline{\mathbf{x}})=\mathbf{0}
\end{gathered}
$$

KKT Conditions

Visualizing KKT Conditions

Suppose we wish to optimize the following problem.

$$
\begin{array}{rl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & g_{1}(\mathbf{x}) \leq 0 \\
& g_{2}(\mathbf{x}) \leq 0
\end{array}
$$

$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})+\lambda_{1} g_{1}(\mathbf{x})+\lambda_{2} g_{2}(\mathbf{x})$ and one of the KKT conditions is

$$
\begin{array}{r}
\nabla f(\mathbf{x})+\lambda_{1} \nabla g_{1}(\mathbf{x})+\lambda_{2} \nabla g_{2}(\mathbf{x})=\mathbf{0} \\
\Rightarrow-\nabla f(\mathbf{x})=\lambda_{1} \nabla g_{1}(\mathbf{x})+\lambda_{2} \nabla g_{2}(\mathbf{x})
\end{array}
$$

Let's try to relate this to our normal cone version of the optimality conditions.

KKT Conditions

Visualizing KKT Conditions

Suppose the feasible region looks as shown below

The boundaries of the constraints are $g_{1}(\mathbf{x})=0$ and $g_{2}(\mathbf{x})=0$, and the \mathbf{x} values satisfying these points are the level sets of g_{1} and g_{2}.

KKT Conditions

Visualizing KKT Conditions

Therefore, $\nabla g_{1}\left(\mathbf{x}^{*}\right)$ and $\nabla g_{2}\left(\mathbf{x}^{*}\right)$ are orthogonal to boundaries.

Since $-\nabla f\left(\mathbf{x}^{*}\right)=\lambda_{1} \nabla g_{1}\left(\mathbf{x}^{*}\right)+\lambda_{2} \nabla g_{2}\left(\mathbf{x}^{*}\right)$, it belongs to the cone formed by $\nabla g_{1}\left(\mathbf{x}^{*}\right)$ and $\nabla g_{2}\left(\mathbf{x}^{*}\right)$, which is also the normal cone at \mathbf{x}^{*}.

KKT Conditions

Summary

Necessary Conditions

$$
\mathbf{x}^{*} \text { is optimal } \Rightarrow \nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0} \quad \mathbf{x}^{*} \text { is primal optimal and }\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)
$$ is dual optimal and strong duality holds \Rightarrow KKT conditions are satisfied

Sufficient Conditions

$$
\begin{array}{ll}
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0} \text { for a convex } & \text { Objective and constraints involve } \\
\text { function } \Rightarrow \mathbf{x}^{*} \text { is optimal } & \text { convex functions and } \overline{\mathbf{x}} \text { and }(\overline{\boldsymbol{\lambda}}, \overline{\boldsymbol{\mu}})
\end{array}
$$ satisfy KKT conditions $\Rightarrow \overline{\mathrm{x}}$ and $(\bar{\lambda}, \bar{\mu})$ are optimal for the primal and dual and the duality gap is 0

Lecture Outline

Exercises

Exercises

Exercise 1

Using KKT conditions solve

$$
\begin{gathered}
\min _{x_{1}, x_{2}}\left(x_{1}-1\right)^{2}+x_{2}-2 \\
\text { s.t. } x_{1}+x_{2} \leq 2 \\
\\
x_{2}-x_{1}=1
\end{gathered}
$$

- Are the objective and constraints convex?
- Is the solution optimal?

Exercises

Write the KKT conditions for the following problem

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

Exercises

Exercise 3

Write the KKT conditions for the following problem

$$
\begin{aligned}
& \min _{\mathbf{x}} f(\mathbf{x}) \\
& \text { s.t. } \mathbf{A x}=\mathbf{b} \\
& \quad \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

Where $\mathbf{A x}=\mathbf{b}$ is

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Supplementary Reading

Boyd, S., \& Vandenberghe, L. (2004). Convex optimization. Cambridge university press. [PDF]

Your Moment of Zen

