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Previously on Traffic Network Equilibrium...

Consider the following link flow solution. A feasible path flow decomposi-
tion is to have 3 travelers each on paths 1-2-3-4 and 1-3-2-4. (For e.g.,
this could occur in the second iteration of MSA.)
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Can we have travelers on both (2,3) and (3,2) at equilibrium? Both MSA

and FW will leave some residual cyclic flows.
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Previously on Traffic Network Equilibrium...

Over the last two lectures we saw that the equilibrium solutions satisfy two
interesting properties.

1 The equilibrium OD flow cannot be present on both sides of a
two-way street.

2 The ratio of flows on any two routes between an OD pair is
independent of the OD demand. Further, for a given PAS, the ratio
of flows on the two segments is same across all OD pairs.
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Lecture Outline
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2 Topological Ordering
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Lecture Outline

Acyclic Graphs and Bushes
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Acyclic Graphs and Bushes
Definitions

An acyclic graph is a directed graph that does not contain any directed cy-
cles. We will also refer to such graphs as Directed Acyclic Graphs (DAGs).
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Acyclic Graphs and Bushes
Definitions

A bush rooted at a node (typically an origin in Z ) is a sub-graph that
satisfies the following properties:

I Connected
Every other node (destination) is reachable from the origin.

I Acyclic
The sub-graph does have any directed cycles.
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Acyclic Graphs and Bushes
Definitions

A tree is a bush in which every destination is connected by exactly one
path.

In contrast, there can be multiple paths between the origin and a destina-
tion in a bush.

A bush can be viewed as a collection of all used paths of travelers between

a given origin and all the destinations.
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Acyclic Graphs and Bushes
Examples

Which of these sub-networks are (a) acyclic (b) bushes and (c) trees?
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Acyclic Graphs and Bushes
Examples

Which of these sub-networks are (a) acyclic (b) bushes and (c) trees?
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Lecture Outline

Topological Ordering
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Topological Ordering
Introduction

Sometimes, we can relabel the nodes in a graph such that every arc is con-
nected from a lower-labeled node to a higher-labeled node. This procedure
is called topological ordering.

We will use ϑi to denote the topological order of node i . In other words,
ϑi is the new label of node i , and if there exists an arc (i , j), then ϑi < ϑj .
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Topological Ordering
Introduction

The topological ordering for the graph on the left is shown in the boxes.
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Can you find the topological ordering in the figure on the right?

Proposition

A directed network can be topologically ordered iff it is acyclic.
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Topological Ordering
Algorithm

To topologically order nodes, define the indegree of a node as the number
of arcs coming into it. Consider a node i with zero indegree. Set ϑi = 1.

Delete the arcs emanating from i . Pick a new node with indegree zero and
set it’s topological order to 2.

Repeat this procedure until there are no nodes with zero indegree. If there

are leftover nodes, then the network is cyclic.
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Topological Ordering
Algorithm

Topological Ordering(G)

Step 1: Initialize
indegree(i)← 0 ∀ i ∈ N
for (i , j) ∈ A do

indegree(j)← indegree(j) + 1
end for
SEL ← ∅
order ← 0
Add all nodes with zero indegree to SEL

Step 2:
while SEL 6= ∅ do

Remove i from SEL
order ← order + 1
ϑi ← order
for j : (i , j) ∈ A do

indegree(j)← indegree(j)− 1
if indegree(j) = 0 then add j to SEL

end for
end while
if order < n then the network has a cycle
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Topological Ordering
Example
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order = 0, SEL = {1}
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Topological Ordering
Example
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order = 1, SEL = {2}
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Topological Ordering
Example
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Topological Ordering
Example
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order = 3, SEL = {5}
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Topological Ordering
Example
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Topological Ordering
Example
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Topological Ordering
Example
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Lecture Outline

Shortest and Longest Paths
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Shortest and Longest Paths
Introduction

Earlier in the course, we saw Dijkstra’s and label correcting method for
finding the shortest paths.

But it turns out that for DAGs, finding these paths is very simple. We just
need to update labels by scanning nodes in increasing topological order.
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Shortest and Longest Paths
Complexity of Shortest Path Algorithms

Recall that in Dijkstra’s algorithm, at each iteration, we move one node from a
set of temporary labeled nodes to a set of permanently labeled nodes.

Finding the node with minimum label is implementation specific, but the simplest
version takes

Iteration Steps

1 n
2 n − 1
3 n − 2
...

...
n 1

Total n(n + 1)/2

The distance labels are updated at most m times. (Why?) Hence, the overall

complexity is O(n2 + m). Since n2 � m, we simply say that Dijkstra’s runs in

O(n2) time.
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Shortest and Longest Paths
Complexity of Shortest Path Algorithms

In topological ordering, we essentially delete arcs and update the indegrees
of nodes. Hence, the complexity of topological ordering is O(m).

To find the shortest path in a DAG, we simply scan nodes in increasing
topological order and update the labels of the downstream nodes.

In this version, we do not find a node with minimum distance label nor do

we keep track of a SEL. Each arc is scanned at most once. Hence, the

complexity of this method is O(m).
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Shortest and Longest Paths
Shortest Paths on DAGs

Proposition

The proposed algorithm converges to the optimal distance labels.

Proof.

The proof is based on induction. Assume that after iteration k, the algorithm
has optimally labeled nodes i1, i2, . . . , ik whose topological order is 1, 2, . . . , k
respectively.

At iteration k + 1, the algorithm scans the upstream arcs of node ik+1 and
updates it’s label.

Since, this node cannot be reached from other nodes that have a higher
topological order, and since all of it’s upstream nodes are optimally labeled
(from induction hypothesis), the label of node ik+1 has to be optimal.

�
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Shortest and Longest Paths
Shortest Paths on DAGs

Shortest Path(G , r)

Step 1: Initialize
Topological Ordering(G , r)
µr ← 0, πr ← r
µi ←∞, πi ← −1 ∀ i ∈ N\{r}
order ← 1

Step 2:
while order ≤ n do

order ← order + 1
Select j ∈ N : ϑj = order
for i : (i , j) ∈ A do

if µj > µi + tij then
µj ← µi + tij
πj ← i

end if
end for

end while
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Longest Paths on DAGs

For some bush-based algorithms, we not only need the shortest paths but
we also have to compute the longest paths for different OD pairs.

For general graphs, finding the simple/elementary longest path (one with-
out cycles) is NP-Hard (they cannot be solved in polynomial time).

However, for DAGs, we can modify the earlier algorithm and find the one-
to-all longest paths in O(m) time.
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Shortest and Longest Paths
Algorithm

Longest Path(G , r)

Step 1: Initialize
Topological Ordering(G , r)
νr ← 0, πr ← r
νi ← −∞, πi ← −1 ∀ i ∈ N\{r}
order ← 1

Step 2:
while order ≤ n do

order ← order + 1
Select j ∈ N : ϑj = order
for i : (i , j) ∈ A do

if νj < νi + tij then
νj ← νi + tij
πj ← i

end if
end for

end while
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Shortest and Longest Paths
Example
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Your Moment of Zen
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