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Previously on Traffic Network Equilibrium...

Equilibrium solutions can be computed in terms of the link flows or the
path flows.

Knowledge of either of them lets us compute link travel times using the
delay functions.

The travel time on a path is simply the sum of the travel times on the

links belonging to the path.
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Lecture Outline

1 Drawbacks of Link-based Methods

2 Gradient Projection

3 Example
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Lecture Outline

Drawbacks of Link-based Methods
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Drawbacks of Link-based Methods
Introduction

Link-based methods are attractive because they require minimal storage.

𝒙

𝒙∗

However, they are prone to zig-zagging and some other issues.
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Drawbacks of Link-based Methods
Steps Size Selection

The flows between all OD pairs in FW and MSA are updated using the
same step size.

This slows convergence since the flows for some OD pairs may be closer
to equilibrium than others.

Can we solve this issue by having different step sizes for different OD pairs?
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Drawbacks of Link-based Methods
Cyclic Flows

Consider the following link flow solution. A feasible path flow decomposi-
tion is to have 3 travelers each on paths 1-2-3-4 and 1-3-2-4. (For e.g.,
this could occur in the second iteration of MSA.)

1

2

3

46 6

3

3

3 3

3

3

Can we have travelers on both (2,3) and (3,2) at equilibrium? Both MSA
and FW will leave some residual cyclic flows. What about U-turns?
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Lecture Outline

Gradient Projection
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Gradient Projection
Introduction

Gradient projection is a path-based methods in which the decision variables
are the path flows y.

However, since the number of paths are exponential, we will work with a
subset of paths P̂rs .

At each iteration, new paths will be added to this set if they are shortest,

flows will be shifted from longer to shorter ones, and old paths will be

removed if they are no longer used.
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Gradient Projection
Introduction

We will first study the mathematical framework for this problem. Later,
an alternate simplified version will be discussed.

For notational ease, imagine a network with a single OD pair. Extending

it to the general case is trivial.
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Gradient Projection
Modified Formulation

Consider the Beckmann formulation in terms of the path flows

min
∑

(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω) dω

s.t.
∑
p∈P

yp = d

yp ≥ 0 ∀ p ∈ P
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Gradient Projection
Modified Formulation

One option to solve the Beckmann formulation is to

1 Start with a feasible solution and take a step in the direction of the
negative gradient.

2 If we reach an infeasible point, project it back to the feasible region.

Step 2 of this approach is not easy. However, if we did not have the supply
demand constraints, finding the projection is a cakewalk.

Simply set all negative yps to zeros. How do we get rid of the supply-

demand constraints? If we know the demand and the flows all the paths

except one, we can get the flow on the excluded path.
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Gradient Projection
Modified Formulation

Suppose for some path flow solution y, let p∗ be the path with the shortest travel
time, which we call basic path. The remaining paths are called non-basic paths.
Then,

yp∗ = d −
∑

p∈PNB

yp

where PNB is the set of all non-basic paths. Substituting this in the Beckmann
formulation, we get a transformed objective f̂

𝑟 𝑠

𝑝∗

𝑃𝑁𝐵

min
∑

(i,j)∈A

∫ δ
p∗
ij (d−

∑
p∈PNB

yp)+
∑

p∈PNB
δ
p
ij yp

0

tij(ω) dω

s.t. yp ≥ 0 ∀ p ∈ PNB
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Gradient Projection
Modified Formulation

This modified formulation has one less variable and does not require explicit
supply-demand constraints. (Why?)

min
∑

(i,j)∈A

∫ δp
∗

ij

(
d−
∑

p∈PNB
yp
)

+
∑

p∈PNB
δpijyp

0

tij(ω) dω

s.t. yp ≥ 0 ∀ p ∈ PNB

Non-basic paths are expensive than p∗. Hence, their flow decreases but
we have a constraint to ensure that they are always ≥ 0.

When yp ↓ for p ∈ PNB , (d −
∑

p∈PNB
yp) ↑. Again, because of the

non-negative constraints, the flow on the basic path can never exceed d .
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Gradient Projection
Descent Direction

Suppose f denotes the original Beckmann function and f̂ represents the
modified objective.

f =
∑

(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω) dω

f̂ =
∑

(i,j)∈A

∫ δp
∗

ij

(
d−
∑

p∈PNB
yp
)

+
∑

p∈PNB
δpijyp

0

tij(ω) dω

Recall that
∂f

∂yp
=
∑

(i,j)∈A

δpij tij(xij) = τp

We will first show that for all p ∈ PNB ,

∂ f̂

∂yp
=

∂f

∂yp
− ∂f

∂yp∗
= τp − τp∗
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Gradient Projection
Descent Direction

f̂ =
∑

(i,j)∈A

∫ δ
p∗
ij

(
d−
∑

p∈PNB
yp

)
+
∑

p∈PNB
δ
p
ij yp

0

tij(ω) dω

∂ f̂

∂yp
=
∑

(i,j)∈A

∂

∂xij

∫ δ
p∗
ij

(
d−
∑

p∈PNB
yp

)
+
∑

p∈PNB
δ
p
ij yp

0

tij(ω) dω
∂xij
∂yp

=
∑

(i,j)∈A

tij(xij)
∂

∂yp

δp∗ij (d − ∑
p∈PNB

yp

)
+
∑

p∈PNB

δpijyp


=
∑

(i,j)∈A

tij(xij)
(
− δp

∗

ij + δpij

)
= τp − τp∗

Caution: ∂xij/∂yp is not just δpij because changing the flow on path p also affects

the flow on the basic path p∗
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Gradient Projection
Step Size

To compute the step size, a quasi-Newton method is used in which the
inverse of the diagonal elements of the Hessian are used to update the y
values.

In other words, the updates to flows on non-basic paths are made as

yk+1
p = yk

p −

(
∂2 f̂

∂y2
p

)−1 ∣∣∣∣∣
yp=yk

p

(τ kp − τ kp∗)

However, this may result in negative flows, in which case we take its pro-
jection on the feasible region. That is,

yk+1
p =

yk
p −

(
∂2 f̂

∂y2
p

)−1 ∣∣∣∣∣
yp=yk

p

(τ kp − τ kp∗)

+
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Gradient Projection
Step Size

For a path p ∈ PNB ,

∂2 f̂

∂y2
p

=
∂

∂yp
(τp − τp∗)

=
∂

∂yp

∑
(i,j)∈A

(
δpij − δ

p∗

ij

)
tij(xij)

=
∑

(i,j)∈A

(
δpij − δ

p∗

ij

)
t ′ij(xij)

∂xij
∂yp

=
∑

(i,j)∈A

(
δpij − δ

p∗

ij

)
t ′ij(xij)

∂

∂yp

δp∗ij (d − ∑
p∈PNB

yp

)
+
∑

p∈PNB

δpijyp


=
∑

(i,j)∈A

(
δpij − δ

p∗

ij

)2

t ′ij(xij)
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Gradient Projection
Step Size

Let Â represent the set of links that are contained either in path p or p∗

but not both. Then,

∂2 f̂

∂y2
p

=
∑

(i,j)∈A

(
δpij − δ

p∗

ij

)2

t ′ij(xij)

=
∑

(i,j)∈Â

t ′ij(xij)
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Gradient Projection
Alternate Derivation

We can derive similar expressions for the GP algorithm in a simpler, but
relatively less formal way.

Instead of using the modified Beckmann function and new decision vari-
ables, simply assume that at each iteration, we identify a basic path p∗

and a set of non-basic paths PNB .

Let us just shift flows from all non-basic paths to basic paths to equalize

their travel times.
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Gradient Projection
Alternate Derivation

Suppose we shift ∆y units of flow from a path p ∈ PNB to p∗.

Let τp(∆y) and τp∗(∆y) be the travel time on the path p and p∗ after
shifting ∆y units of flow.

Define g(∆y) = τp(∆y) − τp∗(∆y) as the difference in the travel times.
The goal is to find ∆y such that g is zero.

We can use an iteration of Newton-Raphson method∗ to find the zeros of
a function with ∆y = 0 as the initial solution.

∗xn+1 = xn − f (xn)
f ′(xn)
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Gradient Projection
Alternate Derivation

We typically just perform one iteration and avoid finding the zero since
flow shifts from other paths and OD pairs will disturb the travel times on
these paths.

Hence, the amount of flow that has to be shifted is given by

− g(0)

g ′(0)
= −τp − τp

∗

g ′(0)

What is g ′(0)? If a link does not belong to path p or p∗ or if belongs to

both paths, shifting flows does not impact the travel times on the link.
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Gradient Projection
Alternate Derivation

g ′(∆y) = τ ′p(∆y)− τ ′p∗(∆y)

I Suppose a link (i , j) belongs to p and not p∗

Recall that ∆y is shifted from p to p∗. Increasing it will decrease
the flow on path p and subsequently the travel time will reduce by
t ′ij(xij). Hence, g ′(0) will contain −t ′ij(xij).

I Suppose a link (i , j) belongs to p∗ and not p

Increasing ∆y will increase flow on p∗ and increase its travel time
by t ′ij(xij). But since τp∗(∆y) has a negative sign, g ′(0) will contain
−t ′ij(xij).

∴ g ′(0) = −
∑

(i,j)∈Â

t ′ij(xij)
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Gradient Projection
Alternate Derivation

From the above discussion,

− g(0)

g ′(0)
=

τp − τp∗∑
(i,j)∈Â t ′ij(xij)

However, this flow shift may result in negative yp. Hence, perform a
projection step by setting

∆y = min

{
yp,

τp − τp∗∑
(i,j)∈Â t ′ij(xij)

}
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Gradient Projection
Summary

GP(G)

Initialize P̂rs ← ∅∀ (r , s) ∈ Z2

while Relative Gap > 10−4 do
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z do

Add the shortest path p∗ to P̂rs if isn’t already present
if P̂rs contains a single path then

Set its flow to drs
else for each non-basic path p

yp ← yp −min

{
yp ,

τp−τp∗∑
(i,j)∈Â t′ij (xij )

}
yp∗ ← yp∗ + min

{
yp ,

τp−τp∗∑
(i,j)∈Â t′ij (xij )

}
end if

end for
Update link flows and travel times

end for
Remove paths from P̂rs that are no longer used
Relative Gap ← TSTT/SPTT − 1, k ← k + 1

end while
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Gradient Projection
Summary

How does the GP algorithm overcome the disadvantages of MSA and FW?

I Same step size for all OD pairs

I Erasing cyclic flows
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Lecture Outline

Example
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Example
Network with 2 OD Pairs

Find the UE flows using GP in the following network where the delay
function on each link is 10 + x/100

1

2

3

4

5000

5 6

5000

10000 10000
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Your Moment of Zen

Blame it on Frank-Wolfe?
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