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Previously on Traffic Network Equilibrium...

I All travelers select paths at the same instant and we do not
explicitly model the departure times and times at which travelers
enter a link. Hence, this process of modeling route choice is also
called static traffic assignment.

I In other words, we only analyze the spatial distribution of
congestion and ignore the temporal dimension. There are advanced
models which capture both aspects (dynamic traffic assignment).

I Travelers are fully rational and selfish and seek routes that minimize
their travel times.

I Travelers are fully aware of the network topology and its
response to congestion (perhaps from experience).

This simplified setting is representative of a “steady state” and allows us

to study equilibrium analytically.
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Previously on Traffic Network Equilibrium...

I The BPR functions are defined for flow values that exceed capacity.
We’ll ignore capacity constraints in this course but there are
formulations and solution techniques which explicitly model capacity
constraints.

I Alternately, we can define delay functions that exhibit a steep
increase at flows close to the roadway capacity.

I Practitioners often use V/C ratios, i.e., xij/Cij , to identify the links
that are heavily congested.
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Lecture Outline

1 Stochastic User Equilibrium

2 Day-to-Day Traffic Assignment

3 Capacitated Traffic Assignment

4 Equilibrium with Recourse
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Lecture Outline

Stochastic User Equilibrium
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Stochastic User Equilibrium
Introduction

So far, we assumed that travelers select routes with least travel time (or
generalized cost).

In practice, travelers may

I Have other criteria for route selection. (Such as ?)

I Not know travel time conditions in the network (perception errors).

Let us, as usual, consider the path selection process with fixed travel times

and then extended it to the equilibrium problem with flow-dependent link

times.
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Stochastic User Equilibrium
Choice Modeling

In such settings, we may assume that the utility of traveling on a path p
is expressed as

up = −θτp + εp

where θ is a scale parameter (else the utilities depend on the units of time),
that can be related to the level of perception errors.

Travelers choose from a finite number of paths (discrete choices) and they
select a path p only if it’s utility is greater than or equal to the utilities of
all other paths.

up ≥ uq ∀q ∈ Prs

⇒ −θτp + εp ≥ −θτq + εq ∀ q ∈ Prs
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Stochastic User Equilibrium
Choice Modeling

Thus, the probability with which p is be chosen is given by

P[−θτp + εp ≥ −θτq + εq ∀ q ∈ Prs ]

If the εp variables are identically distributed extreme value type I (Gum-
bel) distributed, then the above probability has the following closed form
expression

exp(−θτp)∑
q∈Prs

exp(−θτq)

This framework is also called the logit model. The number of users on
path p is therefore given by

drs
exp(−θτp)∑

q∈Prs
exp(−θτq)
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Stochastic User Equilibrium
Example

Suppose there are two parallel routes between O and D with travel times
10 and 20. If the demand between O and D is 100 and if θ = 0.1. What
are the flows on each route? What if θ = 1?

I Hence, as θ →∞, we get the deterministic user equilibrium model.

I For different assumptions on the distributions of the error terms, we
get different types of SUE models.

I For logit-based SUE, Dial in 1971 suggested a network loading
method that avoids path enumeration.
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Stochastic User Equilibrium
Equilibrium Definitions

In practice, path travel times are a function of path flows, which in-turn
determine choice probabilities and new path flows.

We assume that travelers in a stochastic user equilibrium setting select
paths that minimize their perceived travel times.

Suppose π(τ ) represents a function that provides the path flows for a given
vector of path travel times (e.g., the logit formula we saw earlier).

Then, y is a stochastic user equilibrium if and only if y = π(τ (y)).
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Stochastic User Equilibrium
Fisk’s Optimization Formulation

Fisk in 1980 provided the following optimization model for solving the
logit-based SUE.

min
1

θ

∑
p∈P

yp ln yp +
∑

(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω)dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

The KKT conditions of this program be shown to satisfy the logit proba-

bilities.
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Supplementary Reading

Dial, R. B. (1971). A probabilistic multipath traffic assignment model
which obviates path enumeration. Transportation research, 5(2), 83-111.

Daganzo, C. F., & Sheffi, Y. (1977). On stochastic models of traffic

assignment. Transportation science, 11(3), 253-274.
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Lecture Outline

Day-to-Day Traffic Assignment
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Day-to-Day Traffic Assignment
Discrete Time Version

In the discrete time version, travelers are typically assumed to be finite.

Each network user observes the network performance on the last m days
and users that to construct a probability distribution across all the paths.

The evolution of traffic is represented a discrete time Markov chain. The
state space consists of the number of travelers on different paths.

The transition probabilities for moving from one state to another is con-

structed using the individual choice probabilities (such as the logit choice

equation).
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Day-to-Day Traffic Assignment
Discrete Time Version

Consider the following network with three states (2, 0), (0, 2), and (1, 1),
which we will refer to as 1, 2 and 3 respectively. State 1 is a NE and state
3 is SO.

O D 

𝑡1 𝑥1 =  4𝑥1 

𝑡2 𝑥2 =  8 

2 2 

Suppose both travelers use the logit choice model in which the probability
of choosing the top paths is

exp(−t1(x1))

exp(−t1(x1)) + exp(−t2(x2))

Where t1(x1) and t2(x2) represents the travel times as a function of the

previous day’s flow.
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Day-to-Day Traffic Assignment
Discrete Time Version

The stochastic process is Markovian and the steady state probabilities of
observing states 1, 2, and 3 are 0.5654, 0.1414, and 0.2932 respectively.

The expected TSTT is 16(0.5654) + 16(0.1414) + 12(0.2932) = 14.8272.

In these models, the system constantly transitions from one state to an-
other and the equilibrium is defined with respect to the long run probabil-
ities of observing it in different states.

There are some interesting connections between these type of models, SUE,

and the learning approaches we saw in Lecture 10.
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Day-to-Day Traffic Assignment
Continuous Time Version

In the continuous time models, travelers are at a non-equilibrium state,
aware of travel times on different routes, and switch from one route to
another at a rate proportional to the difference in their travel times.

Using Lyapunov functions, it can be shown that such dynamical systems

converge to the set of equilibira (under some conditions on the travel time

functions).
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Supplementary Reading

Cascetta, E. (1989). A stochastic process approach to the analysis of
temporal dynamics in transportation networks. Transportation Research
Part B: Methodological, 23(1), 1-17.

Smith, M. J. (1984). The stability of a dynamic model of traffic assignment

- an application of a method of Lyapunov. Transportation Science, 18(3),

245-252.
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Lecture Outline

Capacitated Traffic Assignment
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Capacitated Traffic Assignment
Introduction

In all models discussed so far, we let flow exceed capacity. This can be
avoided by imposing explicit constraints.

In reality, when flow reaches capacity traffic queues spill back to upstream
links.

Capacity constraints are bundle constraints, i.e., we can no longer analyze
each OD pair separately by repeatedly solving shortest path problems.

Instead, the subproblem is a multicommodity minimum cost flow problem,
which is relatively harder to solve.
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Capacitated Traffic Assignment
Formulation

Suppose Cij is the capacity of link (i , j). The capacitated traffic assignment
problem (CTAP) can be formulated as

min
∑

(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

∑
p∈P

δpijyp ≤ Cij ∀ (i , j) ∈ A

yp ≥ 0 ∀ p ∈ P

For strictly increasing delay functions, the problem is strictly convex and

has unique link flow solutions.
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Capacitated Traffic Assignment
Formulation

Does the new constraint alter the definition of Wardrop equilibria?
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Capacitated Traffic Assignment
Formulation

In terms of the path flows, the Lagrangian can be written as

L(y,λ,µ,ν) =
∑

(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω) dω +
∑
p∈P

λp(−yp)

+
∑

(r ,s)∈Z 2

µrs

drs −
∑
p∈Prs

yp

+
∑

(i,j)∈A

νij

∑
p∈P

δpijyp − Cij
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Path-based Formulation
KKT Conditions

Primal feasibility: ∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

∑
p∈P

δpijyp ≤ Cij ∀ (i , j) ∈ A

yp ≥ 0 ∀ p ∈ P

Dual feasibility:
λp ≥ 0 ∀ p ∈ P

νij ≥ 0 ∀ (i , j) ∈ A

Complementary Slackness:
λpyp = 0∀ p ∈ P

νij

(∑
p∈P

δpijyp − Cij

)
= 0∀ (i , j) ∈ A

Gradient of the Lagrangian vanishes:∑
(i,j)∈A

δpij tij(xij) +
∑

(i,j)∈A

δpijνij − λp − µrs = 0∀ (r , s) ∈ Z 2, p ∈ Prs

Lecture 19 Overview of other TAP Variants



25/44

Path-based Formulation
KKT Conditions

Replacing
∑

p∈P δ
p
ijyp by xij , the complementary slackness condition can

be written as

νij(xij − Cij) = 0∀ (i , j) ∈ A

Hence, if νij > 0, then xij = Cij , i.e., the link is at its capacity. One can

thus interpret νij as the extra delay caused when a link is at capacity (due

to queue spillback).
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Path-based Formulation
KKT Conditions

Using the last equation and other complementary slackness conditions, we
can write

∑
(i,j)∈A

δpij
(
tij(xij) + νij

)
≥ µrs

yp

 ∑
(i,j)∈A

δpij
(
tij(xij) + νij

)
− µrs

 = 0

Thus, users in the CTAP problem are assumed to minimize “generalized
cost of travel”, where the generalized cost on a link is defined as tij(xij)+νij
(the delay on the link + delay caused when the link is at capacity).
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Capacitated Traffic Assignment
Penalty Methods

Penalty methods ignore the capacity constraints but modify the objec-
tive function by adding an extra term which ensure that the flows remain
bounded.

Two common penalty methods used are

I Inner Penalty Function (IPF) method

I Augmented Lagrange Multiplier (ALM) method
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Capacitated Traffic Assignment
Inner Penalty Functions

The IPF method (also called Barrier method) imposes an asymptotic
penalty function at the boundary of the feasible set.

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω + γ
∑

(i,j)∈A

πij(xij)

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

where the function πij(xij) is assumed to be positive, continuous, and tends
to ∞ as xij → Cij .

It can be shown that the sequence of solutions of the above formulation
converges to the optimum of CTAP as γ → 0.

Lecture 19 Overview of other TAP Variants



29/44

Capacitated Traffic Assignment
Inner Penalty Functions

1,000 2,000 3,000 4,000

10

20

30

10(1+0.15( x
2000 )

4)

xij

tij(xij)
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Capacitated Traffic Assignment
Augmented Lagrange Multiplier

The ALM method imposes a quadratic penalty to the objective. Consider
a non-linear program with equality constraints,

min
x

f (x)

s.t. hi (x) = 0 ∀ i = 1, 2, . . . ,m

The augmented Lagrangian function is defined as

L(x,µ, ρ) = f (x) +
m∑
i=1

µihi (x) +
1

2
ρ

m∑
i=1

hi (x)2

In iteration k, given a value of µk and ρk , we solve an unconstrained
problem minL(x,µk , ρk) to get xk . The µs and ρ are then updated as (κ
is a constant)

µk+1 = µk + ρkh(xk)

ρk+1 = κρk
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Capacitated Traffic Assignment
Augmented Lagrange Multiplier

For the CTAP, the capacity constraints are inequalities. To cast it as
equalities, we can add slack variables as follows.

xij − Cij + ξij = 0 ∀ (i , j) ∈ A

ξij ≥ 0 ∀ (i , j) ∈ A

Thus, the augmented Lagrangian takes the form,

L(x, ξ,µ, ρ) =
∑

(i,j)∈A

∫ xij

0

tij(ω) dω +
∑

(i,j)∈A

µi

(
xij − Cij + ξij

)
+

1

2
ρ
∑

(i,j)∈A

(
xij − Cij + ξij

)2
Fixing µ and ρ, one can minimize the above function to find x and ξ and

use them to update the µ and ρ values.
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Supplementary Reading

Larsson, T., & Patriksson, M. (1995). An augmented Lagrangean dual
algorithm for link capacity side constrained traffic assignment problems.
Transportation Research Part B: Methodological, 29(6), 433-455.

Nie, Y., Zhang, H. M., & Lee, D. H. (2004). Models and algorithms for the

traffic assignment problem with link capacity constraints. Transportation

Research Part B: Methodological, 38(4), 285-312.
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Lecture Outline

Equilibrium with Recourse
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Equilibrium with Recourse
Introduction

Imagine you are traveling along route A. Say your app informs you of an

incident downstream and suggests an alternate route B.

Suppose the accident reduces capacity for 15 min in the three-hour peak

period, it is reasonable to assume that 1/12 of the travelers will observe

the disrupted state and 11/12 of the travelers will not. (Or think about

signals)
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Equilibrium with Recourse
Online Routing

A traveler has to keep in mind that the new route is likely to get congested
as travelers shift to it and that the incident will reduce capacity but will
clear up after sometime.

Choices of travelers arriving at the fork

1 Always take A

2 Always take B

3 Take A if there is an incident and B otherwise

4 Take B if there is an incident and A otherwise
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Equilibrium with Recourse
Assumptions

When network states change, drivers arriving at a node learn adjacent link-
states and choose a downstream node to minimize their expected travel
times.

Let each link in the network (i , j) exist in different states s ∈ Sij with link
performance functions tsij(x

s
ij).

The probability with which a traveler will encounter a link (i , j) in state s
is also assumed to be known.

We also make a full-reset assumption, i.e., even if a traveler revisits a

node, the downstream link-states are re-sampled from the assumed distri-

butions.
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Equilibrium with Recourse
Online Shortest Paths

Imagine that the travel times for each link-state are not flow dependent.

Upon arriving at a node i , a traveler observes a information vector θ ∈
Θi = ×(i,j)∈ASij with probability qθ informing him or her of the state of
each link leaving node i .

𝑖 

𝑗 

𝑘 

𝑙 

𝑠𝑖𝑗  

𝑠𝑖𝑘  

𝑠𝑖𝑙  

𝜃 = (𝑠𝑖𝑗 , 𝑠𝑖𝑘 , 𝑠𝑖𝑙) 

A policy π(i , θ) is a function that maps each node-information vector pair

to a downstream node.
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Equilibrium with Recourse
Online Shortest Paths

The problem can be formulated as a total cost Markov decision process,
and in order to find the optimal policy, we can use techniques such as
value or policy iteration.

1 
2 

3 4 

1 

1 

1 

    1  (0.1) 
101 (0.9) 

Consider the policy: Take arc (3,4) only if its cost is 1, else return to node
3 via nodes 1 and 2. The expected cost of the policy is an arithmetico
geometric sequence!

3(0.1) + 6(0.9)(0.1) + 9(0.9)2(0.1) + . . . = 3(0.1)
[
1(1) + 2(0.9) + 3(0.9)2 + . . .

]
= 30
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Equilibrium with Recourse
Online Shortest Paths

Since the optimal policy may have cycles, the all-or-nothing step is non-
trivial.

However, cycles are an artifact of the full-reset assumption and ideally we’d
prefer loading travelers on acyclic policies.

There are some methods to handle the issue of cycles but for now we will

assume that travelers can take cyclic policies.
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Equilibrium with Recourse
All-or-Nothing Assignment

Suppose that the demand between nodes 1 and 4 is 1. Assume everyone

follows the policy described earlier.

1 
2 

3 4 

1 

1 

0.9 

𝑠1: 0.1 
𝑠2: 0 

1 

1 

1 
2 

3 4 

1+0.9 

1+0.9 

0.9 + 0.81 

𝑠1:0.1+0.09 
𝑠2:0+0 

1 

1 

1 
2 

3 4 

1+0.9+0.81 

1+0.9+0.81 

0.9 + 0.81+0.729 

𝑠1: 0.1+0.09+0.081 
𝑠2: 0+0+0 

1 

1 

1 
2 

3 4 

10 

10 
9 

𝑠1: 1 
𝑠2: 0 

1 

1 
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Equilibrium with Recourse
Equilibrium Framework

The Wardrop principle in this setting requires that travelers on all
used policies must have equal and minimal expected times.
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Equilibrium with Recourse
Equilibrium Framework

Update and Fix 
Link State Costs 

Compute 
Shortest Paths 

Policies 

Shift Travelers to 
New Paths Policies 
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Supplementary Reading

Waller, S. T., & Ziliaskopoulos, A. K. (2002). On the online shortest path
problem with limited arc cost dependencies. Networks, 40(4), 216-227.

Rambha, T., Boyles, S. D., Unnikrishnan, A., & Stone, P. (2017). Marginal
cost pricing for system optimal traffic assignment with recourse under
supply-side uncertainty. Transportation Research Part B: Methodological,
110, 104-121.
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Your Moment of Zen
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