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Previously on Traffic Network Equilibrium...

The function t̂ij(x) = tij(x) + x t ′ij(x) is called the marginal cost function.
It consists of

I The original delay function tij(x)

I The externality caused by an additional traveler xt ′ij(x)

Externalities are costs/benefits incurred due to one’s actions by all the
other agents in the system.

In the context of traffic, when an additional traveler takes link (i , j) he or
she increases the travel time by t ′ij(x). This imposes a negative externality
of xt ′ij(x) on all users on (i , j).

Proposition (System Optimal)

At an SO state, all used routes have equal and minimal marginal costs.
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Previously on Traffic Network Equilibrium...

Thus, by setting tolls that equal the congestion externalities imposed by
a traveler one can achieve a SO solution! In other words, solve the SO
problem and set a toll of xSOij t ′ij(x

SO
ij ) on each link.

When a network has tolls, we will assume that travelers minimize gener-
alized cost of travel = γ (travel time) + toll.

γ is the value of time (VoT) measured in |/min. For now, assume that all

travelers have the same VoT of 1.
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Lecture Outline

1 Bicriterion Shortest Paths

2 Example

3 All-or-Nothing Assignment
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Lecture Outline

Bicriterion Shortest Paths
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Bicriterion Shortest Paths
Introduction

In the models studied so far, the value of time (VoT) for all travelers was
assumed to be the same.

However, in reality, VoT varies across population and hence for the same set

of link travel times and link tolls, different individuals might find different

paths “shortest”.
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Bicriterion Shortest Paths
Introduction

We will begin by studying the problem of equilibrium flows when:

I The VoT parameter for an OD pair is a random variable with a
known distribution.

I Fixed values of tolls are collected on different links and this
information is known.

In the next set of lectures, we will also explore system optimality and the
right set of tolls for this problem.

The distribution of the VoT parameter is usually assumed to follow in-

come distribution or can be estimated from mixed-logit models or may be

estimated from data on path choices.
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Bicriterion Shortest Paths
Introduction

To understand the impact of variabil-
ity in VoT, let us look at a related
example. Consider the process of se-
lecting a travel mode.

Each mode takes a certain amount of
time and cost as shown by the points
in the adjacent figure.

Among the 15 options, just as with
paths, we will pick a mode which min-
imizes the generalized cost of travel
γtp +cp, where cp and tp are the cost
and time of mode p and γ is the VoT.
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Bicriterion Shortest Paths
Introduction

Imagine a traveler with a VoT of 0.43 |/min. He/she will choose a mode
that minimizes 0.43tp + cp.

Construct lines with slope -0.43 and the line closest to the origin that
intercepts the modes will be optimal. Hence, car/tollroad will be chosen.

What if the VoT is 0.44? 0.45? There exists a range of VoT values for
which choosing car/tollroad is optimal.

Will someone choose hot-air balloon or dial-a-ride in this example?
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Bicriterion Shortest Paths
Efficiency Frontier

For different values of γ, only the
modes 1-6 maybe optimal. The
boundary joining these modes is
called the efficiency frontier.
We will refer to points where
the slopes change as extreme
points.

As VoT increases, travel times of
the optimal mode decreases but
the cost of travel increases.
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Bicriterion Shortest Paths
Path Choice Probabilities

Let us now try and address the question of how many travelers will choose a
certain path. For illustrative purposes, say there are a 100 travelers who are
deciding which mode to take.

Clearly, modes not on the efficiency frontier will not be chosen. To determine
the demand for modes 1 to 6, we use the density function of the VoT.

For example, the probability of selecting car/tollroad is the probability which
which γ lies between the negative of the slope connecting modes 4 and 5 and
the negative of the slope of the line connecting modes 4 and 3.

Thus, 100(0.63) travelers will choose the car/tollroad option.
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Bicriterion Shortest Paths
Likely Paths

Define likely paths (modes) as paths (modes) that have non-zero probability of
being selected. All remaining paths are unlikely.
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In the above figure, identify

I Points on the efficiency frontier: A, B, C, D, E

I Extreme points: A, B, D, E

I Likely paths: A, B, D, E (if γ is continuous); Potentially A, B, C, D, E (if
γ is discrete)
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Bicriterion Shortest Paths
Estimating VoT PDF

For bicriterion shortest path and equilibrium models, we assume that the
VoT PDF is given.

One way of estimating it in practice is to collect data on how many users
take different routes between an OD pair in a network.

This can be used to estimate the empirical probability of selecting the likely
paths. Since the travel times and tolls on these paths can be measured,
we also know the slopes of the line segments connecting points on the
efficiency frontier.

A curve fitting technique can be used to match the probability of selecting
paths on the efficiency frontier.
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Bicriterion Shortest Paths
Algorithm

For a given γ, the path that minimizes the generalized cost of travel can
be obtained using standard shortest path algorithms.

To enumerate all the likley paths on the efficiency frontier, we can construct
an algorithm that first estimates the slope of the line connecting the fastest
path and cheapest path.

We then seek a new optimal path that minimizes the generalized cost with
VoT equal to negative of the estimated slope.

If the new path has better generalized cost, more paths can be discovered

on either sides of the newly found path using recursion.
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Bicriterion Shortest Paths
Algorithm

In the algorithm that follows, Label Correcting takes arguments –
a graph G, origin node r , and the VoT γ, which is used to convert link
weights to link generalized costs (i.e., γtij + cij).

Assume that we break ties in favor of lower cost paths.
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Bicriterion Shortest Paths
Pseudocode

Likely Paths(G , r , p)

k ← 1
p̂ ← Label Correcting(G , r ,∞)
p1 ← Label Correcting(G , r , 0)
Mid Paths (G , r , p̂, p, k)

Mid Paths(G , r , p̂, p, k)

γ ← −(cp̂ − cpk )/(tp̂ − tpk )
p̃ ← Label Correcting(G , r , γ)
if gp̃ < γtp̂ + cp̂ then

Mid Paths (G , r , p̃, p, k)
Mid Paths (G , r , p̂, p, k)

else
k ← k + 1

end if
pk ← p̂
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Lecture Outline

Example
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Example
9 Node Network

Consider the following 9 node network with link travel times and costs
(tij , cij). Assume that the origin and destination nodes are 1 and 9 respec-
tively.
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Example
9 Node Network

There are 6 paths from node 1 to 9. The following table lists the path
travel time and costs.

Path Time Cost
1-2-3-6-9 154 102
1-2-5-6-9 112 141
1-2-5-8-9 121 107
1-4-5-6-9 113 152
1-4-5-8-9 122 118
1-4-7-8-9 126 105
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Example
Paths in the 9 Node Network
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Example
Inception Time

Each mid paths function calls two additional mid paths sub routines. To
keep track of the recursive steps, denote an iteration using the first or
second mid paths call and also keep track of the mid paths function from
where it was called.

For example, let 0.MP be the first mid paths function call from the function
likely paths.

We write 0.1.MP and 0.2.MP to denote the first and second calls of mid
paths functions.

Thus, 0.1.2.1.MP would denote the first mid paths function called from

the second instance of the mid paths function that was called from the

first instance of the mid paths function called from likely paths!!
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Example
Iteration 1

0.MP(p̂,p)
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Example
Iteration 2

0.1.MP(p̂,p)
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Example
Iteration 3

0.1.1.MP(p̂,p)
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Example
Iteration 4

0.1.2.MP(p̂,p)
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Example
Iteration 5

0.2.MP(p̂,p)
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Example
Iteration 6
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Bicriterion Shortest Paths
Tie Resolution

Recall that the likely paths algorithm only finds the extreme points on the effi-
ciency frontier.

For instance, in the following scenarios, both orange paths are optimal for some
γs but we’d like to select only path A.
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Such tie breaking rules can be easily incorporated in the label correcting algorithm

by minor modifications to the if condition that checks the optimality principle.
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Lecture Outline

All-or-Nothing Assignment
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All-or-Nothing Assignment
Introduction

For a graph with fixed link travel times and tolls, we would like to load
travelers on the shortest generalized cost paths to derive an all-or-nothing
flow solution.

The all-or-nothing flows will be a target direction just as in regular traffic
assignment.
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All-or-Nothing Assignment
Notation

We will use the following terms in describing the all-or-nothing assignment:

Notation Description
x rij(γ) Origin-based flow on link (i , j) for trips with VoT γ

xij(γ) Flow of trips with VoT γ on link (i , j) =
∑

r∈Z x rij(γ)
xij Total flow on link (i , j)
frs(γ) PDF of VoT of demand between (r , s)
drs(γ) Demand of travelers with VoT γ between (r , s) = drs frs(γ)
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All-or-Nothing Assignment
Definition

Define the set X as the set of all feasible flow vectors where the components
of each vector are the x rij(γ) values.

At a given flow solution x, we know x rij(γ), which can be used to find xij
and hence the travel times and tolls. Call them tij and cij .

Keeping the tolls and travel times fixed, we would like minimize the total
generalized trip costs by assigning flows to its particular minimum gener-
alized cost path.

Thus the all-or-nothing assignment or the min-path traffic assignment
(MPA) is defined as

x̂ ∈ arg min
x∈X

∫ ∞

0

∑
(i,j)∈A

(
γtij + cij

)
xij(γ)dγ
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All-or-Nothing Assignment
Algorithm

Estimating all-or-nothing flows for the bicriterion setting is similar to what
we saw in the regular TAP. However, we may have multiple “optimal”
paths between a given OD pair depending on the γ values.

1 At a current solution x, estimate the travel times and tolls and find
all likely paths.

2 Find the probability of selecting each of the likely paths using the
PDF of γ.

3 Multiply the path choice probabilities with the demand drs and load
them on their respective shortest paths.

4 Repeat for all OD pairs and aggregate link flows.
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Your Moment of Zen
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