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Previously on Traffic Network Equilibrium...

The demand information for all OD pairs is commonly referred to as OD
matrix or trip tables.

The number of person trips are computed from the first two steps of the
four-step process. In the third step, these trips are assigned to different
modes (car, bus, two-wheeler etc.) resulting in a trip table for each mode.

But for equilibrium analysis, we assume that demand comprises of only

passenger cars. The demand of other types of vehicles are adjusted by

factors called passenger car units (PCUs) that reflect their sizes relative

to that of a car.
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Previously on Traffic Network Equilibrium...

Definition (Projection)

Let X ⊆ Rn be a closed convex set. For each x∗ ∈ Rn∃!y ∈ X such that

y = arg min
x∈X
‖x− x∗‖

y is called the projection of x∗ on X and is denoted by projX (x∗).

𝒙∗

𝒚

𝑋 𝒙
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Previously on Traffic Network Equilibrium...

Lemma

Let X ⊆ Rn be a closed convex set

y = projX (x∗)⇔ (y − x∗)T (x− y) ≥ 0 ∀ x ∈ X

Proof.

By definition, y minimizes ‖x− x∗‖. Hence, it also minimizes ‖x− x∗‖2.

‖x− x∗‖2 is convex in x and hence the necessary and sufficient conditions
for optimality are

−2(y − x∗) ∈ NX (y)

−2(y − x∗)T (x− y) ≤ 0∀ x ∈ X

�
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Previously on Traffic Network Equilibrium...

Proposition

Suppose X is closed and convex. x∗ is a solution to VI(f,X ) iff x∗ is a
fixed point of projX (x− f(x)), i.e., x∗ = projX (x∗ − f(x∗))

Proof.

(⇒) Since x∗ is a solution to VI(f,X ),

f (x∗)T (x− x∗) ≥ 0 ∀ x ∈ X

⇒
(
x∗ − (x∗ − f (x∗))

)T
(x− x∗) ≥ 0 ∀ x ∈ X

According to previous lemma,

y = projX (x∗)⇔ (y − x∗)T (x− y) ≥ 0∀ x ∈ X

Hence, x∗ = projX (x∗ − f(x∗)).

(⇐) Exercise. �
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Previously on Traffic Network Equilibrium...

So far, we have established that

1 If t(x) is continuous, the function projX (x− t(x)) has fixed
points.

2 These fixed points solve VI(t,X ).

The last piece of the puzzle is to prove that the solutions to the VI
are actually Wardrop equilibria.

Theorem

x∗ satisfies the VI(t,X )⇔ it satisfies the Wardrop principle
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Lecture Outline

1 Strict Monotonicty and Uniqueness

2 Optimization Model for Asymmetric TAP
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Lecture Outline

Strict Monotonicty and Uniqueness
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Strict Monotonicty and Uniqueness
Introduction

For asymmetric TAPs, we will have to use VIs to model equilibrium flows.
We’ve seen that VIs have a solution when t(x) is continuous, but we
haven’t discussed

I Uniqueness of VI solutions

I Algorithmic procedures to compute equilibria

We will first address these aspects by making an additional assumption

called strict monotonicity and then study a more relaxed version of the

problem.
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Strict Monotonicty and Uniqueness
Definition and Properties

Definition

The travel time mapping t(x) : X ⊆ Rm → Rm is said to be strictly monotone
if

(
t(x)− t(x′)

)T
(x− x′) > 0 ∀ x, x′ ∈ X , x 6= x′

Loosely speaking, strict monotonicity implies that the diagonal terms of the
Jacobian are large compared to the off-diagonal terms.

Proposition

Let t(x) be a continuous function on a convex domain. t is strictly monotone
⇔ its Jacobian is positive definite.

Proposition

If t is strictly monotone and continuous, then a solution to the VI(t,X ) is
unique.
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Strict Monotonicty and Uniqueness
Diagonalization

At each iteration, select an arc (i , j). Fix the flows of all the other arcs and
construct a real-valued functions for the delay all the arcs in the network.

Suppose the flow at the kth iteration is (xk1 , x
k
2 , . . . , x

k
m). Solve the sub-

problem in which the objective is∑
(i,j)∈A

∫ xij

0

tij(x
k
1 , x

k
2 , . . . , ω, . . . x

k
m) dω

Let t̃ij(xij) = tij(x
k
1 , x

k
2 , . . . , xij , . . . x

k
m). Then, the step size η in the FW

iteration is obtained by solving∑
(i,j)∈A

t̃ij(ηx̂ij + (1− η)xij)(x̂ij − xij) = 0

Lecture 14 Multi-Class User Equilibrium - Part II



12/29

Strict Monotonicty and Uniqueness
Example

Consider the two-link network with link delay functions as shown below:

O D

𝑡1 𝑥1, 𝑥2 = 2 + 4𝑥1 + 𝑥2

5 5

𝑡2 𝑥1, 𝑥2 = 4 + 3𝑥2 + 2𝑥1

𝑥1

𝑥2

Suppose at the current iteration
the flows are (x1, x2) = (0, 5).
The travel times are (t1, t2) =
(7, 19). Hence, the all-or-nothing
solution is (x̂1, x̂2) = (5, 0). The
sub-problem is therefore to mini-
mize

∫ ηx̂1+(1−η)x1

0

(2 + 4ω + 5) dω +

∫ ηx̂2+(1−η)x2

0

(4 + 3ω) dω

=

∫ 5η

0

(2 + 4ω + 5) dω +

∫ 5(1−η)

0

(4 + 3ω) dω
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Strict Monotonicty and Uniqueness
Convergence

Diagonalization method is known to converge to the equilibrium solution
if the Jacobian of the travel time functions is positive definite.

But for more general settings, it may not converge!
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Strict Monotonicty and Uniqueness
General Asymmetric TAP

If strict monotonicity is not assumed, the traffic assignment problem can
have multiple solutions.

Consider, the two link network with the two classes cars and two-wheelers.

O D
16 Cars

(𝑥1
𝑐 , 𝑥1

𝑡)

(𝑥2
𝑐 , 𝑥2

𝑡)

4 2W

16 Cars

4 2W

Suppose that the link delay functions on link i = 1, 2 is given by

tci (xci , x
t
i ) = 1.5xci + 5x ti + 30

tti (xci , x
t
i ) = 1.3xci + 2.6x ti + 28
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Strict Monotonicty and Uniqueness
General Asymmetric TAP

Suppose that the link delay functions on link i = 1, 2 is given by

tci (xci , x
t
i ) = 1.5xci + 5x ti + 30

tti (xci , x
t
i ) = 1.3xci + 2.6x ti + 28

What are the class-specific travel times on the two links for the following
flow solutions(

xc1 xc2
x t1 x t2

)
=

(
4/3 44/3

4 0

)
,

(
8 8
2 2

)
,

(
44/3 4/3

0 4

)
(
tc1 tc2
tt1 tt2

)
=

(
52 52
40 47

)
,

(
52 52
44 44

)
,

(
52 52
47 40

)

Do they satisfy the Wardrop principle?
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Strict Monotonicty and Uniqueness
General Asymmetric TAP

Stability and Convergence of the Diagonalization algorithm from various
starting points.

Marcotte, P., & Wynter, L. (2004). A new look at the multiclass network

equilibrium problem. Transportation Science, 38(3), 282-292.
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Lecture Outline

Optimization Model for Asymmetric TAP
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Optimization Model for Asymmetric TAP
Introduction

The general approach to finding equilibria has been to find an equiv-
alent convex program.

Can we still find an optimization model even if it is not
convex?
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Optimization Model for Asymmetric TAP
Gap Functions

Definition

Let X represent the feasible region of link flows. Define a gap function
g(x) : Rn → R as maxx′∈X t(x)T (x− x′)

Does the gap function resemble something that we have seen so far?

Proposition

The VI(t,X ) is equivalent to min g(x), s.t. x ∈ X

Proof.

Notice that g(x) ≥ 0 ∀ x ∈ X and g(x∗) = 0 if x∗ satisfies VI(t, x) �
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Optimization Model for Asymmetric TAP
Gap Functions

The gap function formulation is a min-max type program but the objective
is in general nondifferentiable.

This makes it less useful since gradient descent-type approaches can no
longer be used to solve the problem.

Is there an alternate optimization program in which the objective
is differentiable?
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Optimization Model for Asymmetric TAP
Extending Norms and Projections

Before, formulating such an optimization model, we will first generalize
the definitions of norms and projections.

In the discussion that follows let G represent a given symmetric positive
definite matrix.

Definition

The G-norm in Rn is defined as ‖x‖G =
√

xTGx

The old definitions can be recovered by simply setting G = I, the identity

matrix.
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Optimization Model for Asymmetric TAP
Extending Norms and Projections

Definition

For each x∗ ∈ Rn∃!y ∈ X such that

y = arg min
x∈X
‖x− x∗‖

y is called the projection of x∗ on X and is denoted by projX (x∗).

Definition

For each x∗ ∈ Rn∃!y ∈ X such that

y = arg min
x∈X
‖x− x∗‖G

y is called the projection of x∗ on X and is denoted by projX ,G(x∗).
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Optimization Model for Asymmetric TAP
Extending Norms and Projections

Proposition

Projection mappings are non-expansive, i.e.,
‖projX ,G(x)− projX ,G(x′)‖G ≤ ‖x− x′‖G ∀ x, x′ ∈ X

In other words, the G-distance between two points is always atleast greater

than the G-distance between their projections.
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Optimization Model for Asymmetric TAP
Extending Norms and Projections

Earlier, we saw that
Proposition

y = projX (x∗)⇔ (y − x∗)T (x− y) ≥ 0 ∀ x ∈ X

Proposition

Suppose X is closed and convex. x∗ is a solution to VI(t,X ) iff x∗ is a fixed
point of projX (x− t(x)), i.e., x∗ = projX (x∗ − t(x∗))

Similarly,
Proposition

y = projX ,G(x∗)⇔ (y − x∗)TG(x− y) ≥ 0∀ x ∈ X

Proposition

Suppose X is closed and convex. x∗ is a solution to VI(t,X ) iff x∗ is a fixed
point of projX ,G(x− G−1t(x)), i.e., x∗ = projX ,G(x∗ − G−1t(x∗))
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Optimization Model for Asymmetric TAP
Non-linear Program

Let h(x) = projX ,G(x− G−1t(x))

Proposition

The VI(t,X ) is equivalent to solving

min
x∈X

f (x) = −t(x)T (h(x)− x)− 1

2
(h(x)− x)TG(h(x)− x)

Proof.

The objective can be re-written as

f (x) =
1

2

{
‖G−1t(x)‖2G − ‖h(x)− (x− G−1t(x))‖2G

}
=

1

2

{
‖x− (x− G−1t(x))‖2G − ‖h(x)− (x− G−1t(x))‖2G

}
≥ 0

Further, f (x) = 0⇔ x = h(x). But if x = h(x), then x solves VI(t,X ). �

Lecture 14 Multi-Class User Equilibrium - Part II



26/29

Optimization Model for Asymmetric TAP
Gradient of the Objective

It can also be shown that the objective is differentiable and its gradient is

∇f (x) = t(x)− (∇t(x)− G)(h(x)− x)

However, the problem is non-convex and hence local optima may exist!
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Optimization Model for Asymmetric TAP
Special Cases

But if the Jacobian t(x) is positive definite, i.e., the travel time functions
are strictly monotone, then it can be shown that any stationary point is a
global optimum.

In this case, the vector h(x) − x is a descent direction and hence one

need not even evaluate the Jacobian matrix while computing the optimum

solution.
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Historic Notes
Supplementary Reading

Dafermos, S. (1982). Relaxation algorithms for the general asymmetric
traffic equilibrium problem. Transportation Science, 16(2), 231-240.

Fukushima, M. (1992). Equivalent differentiable optimization problems

and descent methods for asymmetric variational inequality problems. Math-

ematical programming, 53(1-3), 99-110.
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Your Moment of Zen
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