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Previously on Traffic Network Equilibrium...

The demand information for all OD pairs is commonly referred to as OD
matrix or trip tables.

The number of person trips are computed from the first two steps of the
four-step process. In the third step, these trips are assigned to different
modes (car, bus, two-wheeler etc.) resulting in a trip table for each mode.

But for equilibrium analysis, we assume that demand comprises of only

passenger cars. The demand of other types of vehicles are adjusted by

factors called passenger car units (PCUs) that reflect their sizes relative

to that of a car.

Lecture 13 Multi-Class User Equilibrium - Part I



3/29

Previously on Traffic Network Equilibrium...

So far, we have established that

1 If t(x) is continuous, the function projX (x− t(x)) has fixed
points.

2 These fixed points solve VI(t,X ).

The last piece of the puzzle is to prove that the solutions to the VI
are actually Wardrop equilibria.
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Previously on Traffic Network Equilibrium...

Theorem

x∗ satisfies the VI(t,X )⇔ it satisfies the Wardrop principle

Proof.

(⇒) Since x∗ satisfies the VI, t(x∗)T (x− x∗) ≥ 0, i.e,

t(x∗)Tx∗ ≤ t(x∗)Tx ∀ x ∈ X

Imagine the path travel times are fixed at t(x∗). The RHS, t(x∗)Tx is
the total system travel time (TSTT) incurred by the flow pattern x.

When the path travel times are fixed, TSTT is minimized if we route
travelers on least travel time paths between each OD pair. Thus, from
the above inequality x∗ is a Wardrop equilibrium.

(⇐) Exercise. �
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Previously on Traffic Network Equilibrium...

The objective is convex in η. (Why?) So the first-order conditions imply
that f ′(η) = 0 at an interior η.

d

dη

∑
(i,j)∈A

∫ ηx̂ij+(1−η)xij

0

tij(ω) dω = 0

⇒
∑

(i,j)∈A

tij (ηx̂ij + (1− η)xij) (x̂ij − xij) = 0

Solving this equation provides the optimal η (assuming it lies in the interior)
which then gives the next iterate.

Within each FW iteration, more computations are needed compared to

MSA but the overall number of iterations are reduced.
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Lecture Outline

1 Multi-Class User Equilibrium

2 Symmetric Traffic Assignment

3 Asymmetric Traffic Assignment

4 Diagonalization
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Lecture Outline

Multi-Class User Equilibrium
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Multi-Class User Equilibrium
Introduction

Earlier, we assumed that traffic was homogeneous and converted the de-
mand for different modes into PCUs.

I Can vehicle composition on a link affect link travel times for
different modes?

I Is it possible to model equilibrium flows for different vehicle types?
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Multi-Class User Equilibrium
Introduction

Imagine a network with two types of vehicles: cars and two-wheelers. Sup-
pose the flows of cars is xcij and x tij .

Let the link delays for cars be tcij (x
c
ij , x

t
ij) and that for two-wheelers be

ttij(x
c
ij , x

t
ij).

As before, we first try to find a convex programming formulation that gives

the equilibrium xc and xt .
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Lecture Outline

Symmetric Traffic Assignment
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Symmetric Traffic Assignment
Assumptions

Unfortunately, it is not possible to formulate a convex program except
when

∂tcij (x
c
ij , x

t
ij)

∂x tij
=
∂ttij(x

c
ij , x

t
ij)

∂xcij
∀ (i , j) ∈ A

In words, the impact of an additional two-wheeler on the travel time of
cars is same as the impact of an additional car on the travel time of two-
wheelers.

The assumption is called symmetric assumption. Do the following BPR-
type functions satisfy this condition?

tcij (x
c
ij , x

t
ij) = t0ij

(
1 + α

(
xcij + 2x tij

2000

)β)

ttij(x
c
ij , x

t
ij) = t0ij

(
1 + α

(
2xcij + x tij

2000

)β)
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Symmetric Traffic Assignment
Assumptions

More generally, multi-class equilibrium falls under a class of problems in
which link delays are no longer separable and can be written as t(x).

The Jacobian of a vector-valued function t(x) is defined as
∂t1
∂x1

∂t1
∂x2

. . . ∂t1
∂xm

∂t2
∂x1

∂t2
∂x2

. . . ∂t2
∂xm

...
...

. . .
...

∂tm
∂x1

∂tm
∂x2

. . . ∂tm
∂xm


Under the earlier assumption, the Jacobian ∇t(x) is a symmetric matrix

and hence this class of problems are also called symmetric TAPs.
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Symmetric Traffic Assignment
Equilibrium Conditions

We say that a solution (xc , xt) is an Wardrop equilibrium if for each mode,

all used paths have equal and minimal travel times.
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Symmetric Traffic Assignment
Convex Program

The multi-class equilibrium problem for symmetric delay functions can be
solved using

min
1

2

∑
(i,j)∈A

(∫ xc
ij

0

tcij (ω, x
t
ij) dω +

∫ xc
ij

0

tcij (ω, 0) dω

+

∫ x t
ij

0

ttij(x
c
ij , ω) dω +

∫ x t
ij

0

ttij(0, ω) dω

)

s.t.
∑
p∈Prs

y c
p = dc

rs ∀ (r , s) ∈ Z 2

∑
p∈Prs

y t
p = d t

rs ∀ (r , s) ∈ Z 2

y c
p ≥ 0 ∀ p ∈ P

y t
p ≥ 0 ∀ p ∈ P
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Symmetric Traffic Assignment
Convex Program

L(y,λc ,λt ,µc ,µt) =
1

2

∑
(i,j)∈A

(∫ xc
ij

0

tcij (ω, x
t
ij) dω +

∫ xc
ij

0

tcij (ω, 0) dω

+

∫ x t
ij

0

ttij(x
c
ij , ω) dω +

∫ x t
ij

0

ttij(0, ω) dω

)
+
∑
p∈P

λcp(−y c
p ) +

∑
p∈P

λtp(−y t
p)

+
∑

(r ,s)∈Z 2

µc
rs

dc
rs −

∑
p∈Prs

y c
p

+
∑

(r ,s)∈Z 2

µt
rs

d t
rs −

∑
p∈Prs

y t
p
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Symmetric Traffic Assignment
Convex Program

Primal feasibility:∑
p∈Prs

y c
p = drs ,

∑
p∈Prs

y t
p = drs ∀ (r , s) ∈ Z 2

y c
p ≥ 0, y t

p ≥ 0 ∀ p ∈ P

Dual feasibility:

λcp ≥ 0, λtp ≥ 0 ∀ p ∈ P

Complementary Slackness:

λcpy
c
p = 0, λtpy

t
p = 0∀ p ∈ P

Gradient of the Lagrangian vanishes:∑
(i,j)∈A

δpij t
c
ij (x

c
ij , x

t
ij)− λcp − µc

rs = 0∀ (r , s) ∈ Z 2, p ∈ Prs

∑
(i,j)∈A

δpij t
t
ij(x

c
ij , x

t
ij)− λtp − µt

rs = 0∀ (r , s) ∈ Z 2, p ∈ Prs
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Symmetric Traffic Assignment
Convex Program

From the last three conditions, eliminating λcp, for all (r , s) ∈ Z 2, p ∈ Prs ,

∑
(i,j)∈A

δpij t
c
ij (x

c
ij , x

t
ij) ≥ µc

rs

y c
p

( ∑
(i,j)∈A

δpij t
c
ij (x

c
ij , x

t
ij)− µc

rs

)
= 0

Similarly, for two-wheelers,∑
(i,j)∈A

δpij t
t
ij(x

c
ij , x

t
ij) ≥ µt

rs

y t
p

( ∑
(i,j)∈A

δpij t
t
ij(x

c
ij , x

t
ij)− µt

rs

)
= 0

These are essentially conditions for Wardrop equilibrium.
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Symmetric Traffic Assignment
Solution Methods

The earlier convex optimization model was a simple extension of the Beck-
mann formulation.

Hence, both MSA and FW can be adapted to find the optimal solution.
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Lecture Outline

Asymmetric Traffic Assignment
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Asymmetric Traffic Assignment
Introduction

The symmetric assumption is too strong since the flows for different modes
have differential effects on the travel times of other modes.

In other words, it is very likely that

∂tcij (x
c
ij , x

t
ij)

∂x tij
6=
∂ttij(x

c
ij , x

t
ij)

∂xcij
∀ (i , j) ∈ A

Such equilibrium problems are also called asymmetric TAPs and do not
impose any structure on the Jacobian of the travel times.

Unfortunately, it is not possible to write a simple convex programming

model for such instances.

Lecture 13 Multi-Class User Equilibrium - Part I



21/29

Asymmetric Traffic Assignment
Road Map

For asymmetric TAPs, we will have to use VIs to model equilibrium flows.
We have seen that VIs have a solution when t(x) is continuous, but we
haven’t discussed

I Uniqueness of VI solutions

I Algorithmic procedures to compute equilibria

We will first address these aspects by making an additional assumption

called strict monotonicity and then study a more relaxed version of the

problem.
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Asymmetric Traffic Assignment
Assumptions

Definition

The travel time mapping t(x) : X ⊆ Rm → Rm is said to be strictly
monotone if (

t(x)− t(x′)
)T

(x− x′) > 0 ∀ x, x′ ∈ X , x 6= x′

If delay functions are strictly increasing in their arguments, it does not
imply that they are strictly monotone.

For example, consider t1(x1, x2) = x1 + 2x2 and t2(x1, x2) = 2x1 + x2.
Evaluate the dot product at x1 = 0, x2 = 6 and x ′1 = 5, x ′2 = 1.

Loosely speaking, strict monotonicity implies that the diagonal terms of

the Jacobian are large compared to the off-diagonal terms.
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Asymmetric Traffic Assignment
Strict Monotonicity

Proposition

Let t(x) be a continuous function on a convex domain. t is strictly monotone
⇔ its Jacobian is positive definite.

Proof.

(⇐) Using the mean value theorem, tij (x)− tij (x
′) = ∇tij (z)T (x′ − x) where

z = x + ω(x− x′)

⇒(xij − x ′ij )(tij (x)− tij (x
′)) = (xij − x ′ij )∇tij (z)

T (x− x′)

⇒
∑

(i,j)∈A
(xij − x ′ij )(tij (x)− tij (x

′)) =
∑

(i,j)∈A
(xij − x ′ij )∇tij (z)

T (x− x′)

⇒(t(x)− t(x′))T (x− x′) =
∑

(i,j)∈A
(xij − x ′ij )∇tij (z)

T (x− x′)

⇒(t(x)− t(x′))T (x− x′) = (x− x′)T∇t(z)(x− x′) > 0

(⇒) Exercise. �
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Asymmetric Traffic Assignment
Uniqueness

Proposition

If t is strictly monotone and continuous, then a solution to the VI(t,X ) is
unique.

Proof.

Suppose not. Let x∗ and x′ be two solutions that satisfy the VI(t,X ). Since
both flows satisfy the VI,

t(x∗)T (x− x∗) ≥ 0 x ∈ X

t(x′)T (x− x′) ≥ 0 x ∈ X

The above two inequalities imply

(t(x∗)− t(x′))T (x′ − x∗) ≥ 0

⇒ (t(x∗)− t(x′))T (x∗ − x′) ≤ 0

which contradicts that t is strictly monotone. �
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Lecture Outline

Diagonalization
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Diagonalization
Introduction

Diagonalization is a FW-like method to solve asymmetric equilibrium prob-
lems. Assume that the travel time functions are strictly monotone.

For a fixed set of link flows, the delay functions can be used to get the
shortest paths and the all-or-nothing flows.

But since we do not have a convex programming objective, we cannot pick
a step size that minimizes the Beckmann function.
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Diagonalization
Method

At each iteration, select an arc (i , j). Fix the flows of all the other arcs and
construct real-valued functions for the delay all the arcs in the network.

Suppose the flow at the kth iteration is (xk1 , x
k
2 , . . . , x

k
m). Solve the sub-

problem in which the objective is∑
(i,j)∈A

∫ xij

0

tij(x
k
1 , x

k
2 , . . . , ω, . . . x

k
m) dω

Let t̃ij(xij) = tij(x
k
1 , x

k
2 , . . . , xij , . . . x

k
m). Then, the step size η in the FW

iteration is obtained by solving∑
(i,j)∈A

t̃ij(ηx̂ij + (1− η)xij)(x̂ij − xij) = 0
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Diagonalization
Method

The method is called diagonalization since the Jacobian of each of the
sub-problems is a diagonal matrix.
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Your Moment of Zen
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