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Previously on Traffic Network Equilibrium...

First-best tolls for achieving SO flows are not unique. Hence, one can seek
tolls that satisfy some secondary objective.

What are the UE flows in the following networks?
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What is the total revenue in both cases? Why might we want to collect

minimum revenue tolls?
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Previously on Traffic Network Equilibrium...

Consider the demand functionDrs(µrs) = 50− 1
2µrs and its inverseD−1

rs (drs) =
100− 2drs
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We will let the demand function D take negative values so that its inverse

exists. Negative demand values are avoid by setting drs = D+(µrs) =

max{D(µrs), 0}
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Previously on Traffic Network Equilibrium...

The equilibrium solution for the elastic demand problem can be obtained
by solving the following convex program.

min
y,d

∑
(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω) dω −
∑

(r ,s)∈Z 2

∫ drs

0

D−1
rs (ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

drs ≥ 0 ∀ (r , s) ∈ Z 2

Note that both terms in the objective have units of time.
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Previously on Traffic Network Equilibrium...

As before, eliminating λp, for all (r , s) ∈ Z 2, p ∈ Prs , we get

τp(y) ≥ µrs

yp (τp(y)− µrs) = 0

These two imply the Wardrop principle. Eliminating νrs , for all (r , s) ∈ Z 2

µrs ≥ D−1
rs (drs)

drs
(
D−1

rs (drs)− µrs

)
= 0

Hence, if the demand between an OD pair is strictly positive D−1
rs (drs) =

µrs . Else, if it zero, the shortest path time is greater than or equal to

time value at which no users are willing to travel between O and D (i.e.,

D−1
rs (0)).
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Lecture Outline

1 Example

2 Gartner Transformation

3 System Optimum with Elastic Demand
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Lecture Outline

Example
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Example
Example 1

Find the equilibrium link flows and demand using MSA and FW
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Example
Method of Successive Averages

MSA(G)

k ← 1
Find a feasible x̂, d̂

while Relative Gap > 10−4 or TMF > ε do
x← 1

k
x̂ + (1− 1

k
)x

d← 1
k

d̂ + (1− 1
k

)d
Update t(x)
x̂← 0
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z , (i , j) ∈ p∗rs do

d̂rs ← D+
rs (µ∗rs)

x̂ij ← x̂ij + d̂rs
end for

end for
TMF ←

∑
(r,s)∈Z2 |d̂rs − drs |

Relative Gap ← TSTT/SPTT − 1
k ← k + 1

end while
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Example
Frank-Wolfe

Frank-Wolfe(G)

k ← 1
Find a feasible x̂, d̂

while Relative Gap > 10−4 or TMF > ε do
if k = 1 then η ← 1 else η ← Bisection(G , x, d, x̂, d̂)
x← ηx̂ + (1− η)x

d← ηd̂ + (1− η)d
Update t(x)
x̂← 0
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z , (i , j) ∈ p∗rs do

d̂rs ← D+
rs (µ∗rs)

x̂ij ← x̂ij + d̂rs
end for

end for
TMF ←

∑
(r,s)∈Z2 |d̂rs − drs |

Relative Gap ← TSTT/SPTT − 1
k ← k + 1

end while
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Lecture Outline

Gartner Transformation
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Gartner Transformation
Artificial Links

Demand functions have a maximum demand that represents the number
of users who are likely to travel. Denote this by d̄rs .

The idea behind Gartner transformation is to create an artificial link be-
tween each OD pair.

The artificial link will carry users who choose to not travel. The remaining

demand will be routed along actual roadway links.
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Gartner Transformation
Choosing Delay Functions

Let xrs represent users who do not travel. Hence, d̄rs − xrs = drs is the
number of users who actually travel.

𝑟 𝑠

𝑥𝑟𝑠

ҧ𝑑𝑟𝑠
ҧ𝑑𝑟𝑠

What should the delay on the artificial links be? Gartner in 1980 suggested

that the delay be set to D−1
rs (d̄rs−xrs), where xrs is the flow on the artificial

link (r , s).
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Gartner Transformation
Objective Function

The Beckmann function for a network with artificial links can be written as∑
(i,j)∈A

∫ xij

0

tij(ω) dω +
∑

(r,s)∈Z2

∫ xrs

0

D−1
rs (d̄rs − ω) dω

Let ω′ = d̄rs − ω. Therefore, dω′ = −dω and the objective becomes

∑
(i,j)∈A

∫ xij

0

tij(ω) dω −
∑

(r,s)∈Z2

∫ d̄rs−xrs

d̄rs

D−1
rs (ω′) dω′

=
∑

(i,j)∈A

∫ xij

0

tij(ω) dω −
∑

(r,s)∈Z2

(∫ 0

d̄rs

D−1
rs (ω′) dω′ +

∫ d̄rs−xrs

0

D−1
rs (ω′) dω′

)

=
∑

(i,j)∈A

∫ xij

0

tij(ω) dω −
∑

(r,s)∈Z2

∫ drs

0

D−1
rs (ω′) dω′ + Constant
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Gartner Transformation
VI Version

The elastic demand problem can also be expressed as a VI. Let D denote the
set of feasible demand vectors, i.e., D = {d : drs ≤ d̄rs , drs ≥ 0 ∀ (r , s) ∈
Z 2}.

Let X a feasible set of link flows, which contains vectors x that satisfy,∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2,d ∈ D

xij =
∑
p∈P

δpijyp ∀ (i , j) ∈ A

yp ≥ 0∀ p ∈ P

Proposition

(x∗,d∗) is an equilibrium ⇔ t(x∗)T (x− x∗)− (D−1(d∗))T (d− d∗) ≥ 0
∀ x,d ∈ X × D
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Lecture Outline

System Optimum with Elastic Demand
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System Optimum with Elastic Demand
Defining the Objective

To find a system optimum solution for the elastic demand problem, one
option is to minimize the TSTT as before.

min
∑

(i,j)∈A

xij tij(xij)

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

xij =
∑
p∈P

δpijyp ∀ (i , j) ∈ A

yp ≥ 0 ∀ p ∈ P

drs ≥ 0 ∀ (r , s) ∈ Z 2

What’s wrong with this approach?
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System Optimum with Elastic Demand
Defining the Objective

I The demand/inverse demand functions do not appear in this model,
so elastic demand is not being modeled. In fact, setting drs to 0 is
optimal!

I Likewise, if we imagine a SO state is induced by tolls, one could set
very high tolls that would prevent everyone from traveling and thus
minimize TSTT.

Minimizing TSTT is clearly not the right objective. To get the comple-
mentary slackness conditions, we need a second term that involves the
inverse demand function. Thus, the objective of the SO problem is

∑
(i,j)∈A

xij tij(xij)−
∑

(r ,s)∈Z 2

∫ drs

0

D−1
rs (ω)dω
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System Optimum with Elastic Demand
Consumer Surplus

How do we interpret the objective? Imagine a single link between each OD
pair.

∑
(i,j)∈A

xij tij(xij)−
∑

(r ,s)∈Z 2

∫ drs

0

D−1
rs (ω)dω

=
∑

(r ,s)∈Z 2

(
drsµrs −

∫ drs

0

D−1
rs (ω)dω

)

= −
∑

(r ,s)∈Z 2

(∫ drs

0

D−1
rs (ω)dω − drsµrs

)
= −CS

where CS denotes the consumer surplus.
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System Optimum with Elastic Demand
Consumer Surplus

Graphically, CS =
∑

(r ,s)∈Z 2

(∫ drs
0
D−1

rs (ω)dω − drsµrs

)
can be represented

using the shaded portion.

𝐷𝑟𝑠
−1

𝑑𝑟𝑠

𝜇𝑟𝑠

One way to interpret the demand
functions is to assume that each trav-
eler has a threshold time below which
he or she is willing to travel.

Thus, Drs(µrs) represents all travelers

who have a threshold greater than or

equal to µrs .

Suppose a traveler’s threshold is 15 min but it takes 10 min to finish the

trip. Hence, the traveler ‘saves’ 5 min and aggregating these values across

all travelers gives the consumer surplus.
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System Optimum with Elastic Demand
Consumer Surplus

In economics, consumer surplus is defined as the difference between the
price individuals are willing to pay for a good and the actual purchase price.

It is a measure of benefit to users and maximizing it is thus equivalent to
maximizing social welfare.

How do you measure CS in traffic networks? Can you think of markets
where CS is easier to measure?

http://freakonomics.com/podcast/uber-economists-dream/

Cohen, P., Hahn, R., Hall, J., Levitt, S., & Metcalfe, R. (2016). Using big data

to estimate consumer surplus: The case of Uber (No. w22627). National Bureau

of Economic Research. [PDF]
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System Optimum with Elastic Demand
Formulation

Thus, the SO problem can be obtained by solving the following optimiza-
tion program.

min − CS =
∑

(r ,s)∈Z 2

∫ drs

0

D−1
rs (ω)dω −

∑
(i,j)∈A

xij tij(xij)

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

xij =
∑
p∈P

δpijyp ∀ (i , j) ∈ A

yp ≥ 0 ∀ p ∈ P

drs ≥ 0 ∀ (r , s) ∈ Z 2

As before, we can replace the link delays with the marginal cost functions

t̂ij(x) = tij(x) + xt ′ij(x) and solve the UE problem to get the SO flows.
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System Optimum with Elastic Demand
Marginal Cost Tolling

We can also achieve a SO by setting a toll of xSOij t ′ij(x
SO
ij ) on each link and

by solving the UE problem, assuming that drivers behave selfishly.

When demand is inelastic, the set of link tolls that induce a SO is not
unique. This is also true for the elastic demand case.

However, all SO tolls generate the same revenue!
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System Optimum with Elastic Demand
Revenue Analysis

To see why, consider the UE problem with a toll of cij on link (i , j).

min
y,d

∑
(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

(tij(ω) + cij) dω −
∑

(r ,s)∈Z 2

∫ drs

0

D−1
rs (ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

drs ≥ 0 ∀ (r , s) ∈ Z 2
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System Optimum with Elastic Demand
Revenue Analysis

Recall that the KKT conditions without tolls were

τp(y) ≥ µrs

yp (τp(y)− µrs) = 0

µrs ≥ D−1
rs (drs)

drs
(
D−1

rs (drs)− µrs

)
= 0

In the presence of tolls, the second equation takes the form

yp

(
τp(y) +

∑
(i,j)∈A

δpijcij − µrs

)
= 0∀ (r , s) ∈ Z 2, p ∈ Prs
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System Optimum with Elastic Demand
Revenue Analysis

For tolls that induce SO flows and demands,

dSO
rs

(
D−1

rs (dSO
rs )− µrs

)
= 0 ∀ (r , s) ∈ Z 2

ySO
p

(
τp(ySO) +

∑
(i,j)∈A

δpijcij − µrs

)
= 0∀ (r , s) ∈ Z 2, p ∈ Prs

Adding these across all OD pairs, and subtracting one from the other,∑
(r,s)∈Z2

∑
p∈Prs

ySO
p

(
τp(ySO) +

∑
(i,j)∈A

δpijcij − µrs

)
−

∑
(r,s)∈Z2

dSO
rs

(
D−1

rs (dSO
rs )− µrs

)
= 0

Therefore,∑
p∈P

ySO
p

∑
(i,j)∈A

δpijcij =
∑

(r,s)∈Z2

dSO
rs D−1

rs (dSO
rs )−

∑
p∈P

ySO
p τp(ySO)

Assuming that the objective is strictly convex, the SO solution is unique and

hence the RHS is a constant.
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Your Moment of Zen
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