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Previously on Traffic Network Equilibrium...

Let’s extend our definition of a graph to include a subset of nodes from

which trips originate or end. These nodes are called zone centroids and

can be actual junctions or artificial nodes.

If zone centroids are artificially cre-
ated, they are connected to nearby
streets using artificial links called
centroid connectors.

It is assumed that artificially created

centroid connectors can be traversed

instantaneously.
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Previously on Traffic Network Equilibrium...

The demand information for all OD pairs is commonly referred to as OD
matrix or trip tables.

The number of person trips are computed from the first two steps of the
four-step process. In the third step, these trips are assigned to different
modes (car, bus, two-wheeler etc.) resulting in a trip table for each mode.

But for equilibrium analysis, we assume that demand comprises of only

passenger cars. The demand of other types of vehicles are adjusted by

factors called passenger car units (PCUs) that reflect their sizes relative

to that of a car.
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Previously on Traffic Network Equilibrium...

Can we reverse engineer a convex function such that the KKT con-
ditions are equivalent to the Wardrop equilibria?

Martin Beckmann, C. B. McGuire, and Christopher Winsten in 1956
discovered such a function in their seminal book Studies in the Eco-
nomics of Transportation.∑

(i ,j)∈A

∫ xij

0
tij(ω) dω

This function is commonly referred to as the Beckmann function.
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Previously on Traffic Network Equilibrium...

Suppose τp(y) denotes the travel time on path p given a path flow vector
y. From the KKT conditions, eliminating λp, for all (r , s) ∈ Z 2, p ∈ Prs ,

τp(y) ≥ µrs

yp (τp(y)− µrs) = 0

From the above equations, µrs is the length of the shortest path.

If yp > 0, then path p must be shortest. If yp = 0, the travel time of path

p must be at least µrs . Voila! Wardrop Principle.
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Lecture Outline

1 Elastic Demand

2 Convex Optimization Formulation

3 Solution Methods
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Lecture Outline

Elastic Demand
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Elastic Demand
Introduction

So far, we assumed that the demand between all OD pairs is fixed. This
assumption is reasonable when most travelers are regular commuters.

However, demand may sometimes depend on some supply-side conditions.

I Suppose we modify the network by building new links. This may
induce new demand (in addition to route shifting).

I Individuals may have the option to select working times or to work
from home. Hence, depending on the congestion levels (or tolls),
one may choose to shift their departure times or to not travel.
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Elastic Demand
Demand Functions

To model this phenomena, assume that the demand between an OD pair
is a function of the time it takes to travel between O and D.

This is true in other markets as well. The demand for a good is a function
of its price. Hence, as the travel time between an OD pair decreases, the
consumption (demand for travel) increases.

Suppose it takes µrs min to travel between (r , s) ∈ Z 2. Let Drs(µrs)

represent the demand function which gives the number of users who

choose to travel between (r , s).
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Elastic Demand
Demand Functions

What should the shape of Drs(µrs) be?
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We could assume it to be non-increasing but we’ll require it to be strictly

decreasing so that it’s inverse exists.
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Elastic Demand
Demand Functions

The inverse demand function takes the number of travelers between the
OD pair as input and provides the time to travel between O and D.
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Mathematically, if drs is the demand and µrs denotes the travel time,
D−1

rs (drs) = µrs .
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Elastic Demand
Demand Functions

Consider the demand functionDrs(µrs) = 50− 1
2µrs and its inverseD−1

rs (drs) =
100− 2drs
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We will let the demand function D take negative values so that its inverse

exists. Negative demand values can be avoided by setting drs = D+(µrs) =

max{D(µrs), 0}
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Lecture Outline

Convex Optimization Formulation
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Convex Optimization Formulation
Introduction

Let’s analyze the following example. Assuming both paths are used, what
are the equilibrium flows?

O D

10 + 𝑥

20 + 𝑥

50 − 𝜇 50 − 𝜇

The Wardrop principle in this setting applies to all users who decide to

travel.
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Convex Optimization Formulation
Introduction

O D

10 + 𝑥

20 + 𝑥

50 − 𝜇 50 − 𝜇

The equilibrium demand and link flows can be calculated using the follow-
ing equations.

10 + x1 = 20 + x2 = µ

d = 50− µ
x1 + x2 = d
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Convex Optimization Formulation
Introduction

With link flows as variables, we derived the Beckmann formulation for

computing an equilibrium. Can we construct a similar formulation using

link flows and demands as variables?
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Convex Optimization Formulation
Complementarity Conditions

Recall that the demand was defined as drs = D+(µrs) = max{D(µrs), 0}
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An alternate way of expressing the above relationship is

drs ≥ 0

drs ≥ Drs(µrs)

drs > 0⇒ drs = Drs(µrs)

Déjà vu?
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Convex Optimization Formulation
Complementarity Conditions

The conditions

drs ≥ 0

drs ≥ Drs(µrs)

drs > 0⇒ drs = Drs(µrs)

can be recast in terms of the inverse demand functions as follows

drs ≥ 0

µrs ≥ D−1
rs (drs)

drs > 0⇒ D−1
rs (drs) = µrs

or equivalently as

drs ≥ 0

µrs ≥ D−1
rs (drs)

drs(D−1
rs (drs)− µrs) = 0
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Convex Optimization Formulation
Desired Conditions

The inverse demand functions have units of time which will prove useful
in formulating an optimization model as we will see shortly.

The optimal solution must satisfy the following conditions:

yp ≥ 0 ∀ p ∈ P

τp(y) ≥ µrs ∀ (r , s) ∈ Z 2, p ∈ Prs

yp (τp(y)− µrs) = 0 ∀ (r , s) ∈ Z 2, p ∈ Prs

drs ≥ 0 ∀ (r , s) ∈ Z 2

µrs ≥ D−1
rs (drs) ∀ (r , s) ∈ Z 2

drs
(
D−1

rs (drs)− µrs

)
= 0 ∀ (r , s) ∈ Z 2

Can you reverse engineer an objective from these equations?
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Convex Optimization Formulation
Beckmann-like Model

The equilibrium solution for the elastic demand problem can be obtained
by solving the following convex program.

min
y,d

∑
(i,j)∈A

∫ ∑
p∈P δ

p
ijyp

0

tij(ω) dω −
∑

(r ,s)∈Z 2

∫ drs

0

D−1
rs (ω) dω

s.t.
∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

drs ≥ 0 ∀ (r , s) ∈ Z 2

Note that both terms in the objective have units of time. Write the KKT

conditions for the above model.
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Convex Optimization Formulation
Beckmann-like Model

L(y, d,λ,µ,ν) =
∑

(i,j)∈A

∫ ∑
p∈P δ

p
ij yp

0

tij(ω) dω −
∑

(r,s)∈Z2

∫ drs

0

D−1
rs (ω) dω

+
∑
p∈P

λp(−yp) +
∑

(r,s)∈Z2

νrs(−drs) +
∑

(r,s)∈Z2

µrs

drs −
∑
p∈Prs

yp
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Convex Optimization Formulation
KKT Conditions

Primal feasibility: ∑
p∈Prs

yp = drs ∀ (r , s) ∈ Z 2

yp ≥ 0 ∀ p ∈ P

drs ≥ 0 ∀ (r , s) ∈ Z 2

Dual feasibility:
λp ≥ 0∀ p ∈ P

νrs ≥ 0 ∀ (r , s) ∈ Z 2

Complementary Slackness:
λpyp = 0 ∀ p ∈ P

νrsdrs = 0 ∀ (r , s) ∈ Z 2

Gradient of the Lagrangian vanishes:∑
(i,j)∈A

δpij tij(xij)− λp − µrs = 0 ∀ (r , s) ∈ Z 2, p ∈ Prs

−D−1
rs (drs)− νrs + µrs = 0 ∀ (r , s) ∈ Z 2
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Convex Optimization Formulation
KKT Conditions

As before, eliminating λp, for all (r , s) ∈ Z 2, p ∈ Prs , we get

τp(y) ≥ µrs

yp (τp(y)− µrs) = 0

These two imply the Wardrop principle. Eliminating νrs , for all (r , s) ∈ Z 2

µrs ≥ D−1
rs (drs)

drs
(
D−1

rs (drs)− µrs

)
= 0

Hence, if the demand between an OD pair is strictly positive D−1
rs (drs) =

µrs . Else, if it is zero, the shortest path time is greater than or equal to

time value at which no users are willing to travel between O and D (i.e.,

τp(y) ≥ µrs ≥ D−1
rs (0)).
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Lecture Outline

Solution Methods
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Solution Methods
Introduction

When the demand is fixed, the set of feasible link flows is convex. Are the
link flows and demands bounded when the demand is elastic?

The optimization model discussed earlier is a convex program. (Why?)
Thus, using MSA or FW we can update both the link flows and OD de-
mands (x,d) within each iteration.

Some food for thought...

I Search direction

I Terminating criteria
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Solution Methods
Search Direction

Before performing an all-or-nothing assignment, we need to compute the
shortest paths between each OD pair.

Suppose the shortest path labels in iteration k are µk
rs . Set the target

demand to d̂k
rs = D+

rs (µk
rs) and denote the vector of demands by d̂k .

With this demand, perform an all-or-nothing assignment and represent the
resulting link flows using x̂k .

xk+1 = ηk x̂k + (1− ηk)xk

dk+1 = ηk d̂k + (1− ηk)dk

Note: xk , x̂k , xk+1 are the flows that correspond to the demands dk , d̂k ,dk+1

respectively.
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Solution Methods
Terminating Criteria

We could use Relative gap and AEC as convergence measures but they do
not involve the OD demands.

Hence, at each iteration k , we define the total misplaced flow (TMF) as∑
(r ,s)∈Z 2

|D+
rs (µk

rs)− dk
rs | =

∑
(r ,s)∈Z 2

|d̂k
rs − dk

rs |

The algorithms are terminated when both TMF and Relative gap/AEC are

less than certain thresholds.
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Solution Methods
Method of Successive Averages

MSA(G)

k ← 1
Find a feasible x̂, d̂

while Relative Gap > 10−4 or TMF > ε do
x← 1

k
x̂ + (1− 1

k
)x

d← 1
k

d̂ + (1− 1
k

)d
Update t(x)
x̂← 0
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z , (i , j) ∈ p∗rs do

d̂rs ← D+
rs (µ∗rs)

x̂ij ← x̂ij + d̂rs
end for

end for
TMF ←

∑
(r,s)∈Z2 |d̂rs − drs |

Relative Gap ← TSTT/SPTT − 1
k ← k + 1

end while
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Solution Methods
Frank-Wolfe

In the FW algorithm, just as with the fixed demand case, we try to find
a step size that minimizes the objective along the line between (x,d) and

(x̂, d̂).

f (η) =
∑

(i,j)∈A

∫ ηx̂ij+(1−η)xij

0

tij(ω) dω −
∑

(r,s)∈Z2

∫ ηd̂rs+(1−η)drs

0

D−1
rs (ω) dω

First-order optimality conditions for interior η imply that f ′(η) = 0, i.e.,

∑
(i,j)∈A

tij
(
ηx̂ij+(1−η)xij

)
(x̂ij−xij)−

∑
(r,s)∈Z2

D−1
rs

(
ηd̂rs + (1− η)drs

)
(d̂rs−drs) = 0

Bisection or Newton’s method can be used to compute the solution to the

above equation.
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Solution Methods
Frank-Wolfe

Frank-Wolfe(G)

k ← 1
Find a feasible x̂, d̂

while Relative Gap > 10−4 or TMF > ε do
if k = 1 then η ← 1 else η ← Bisection(G , x, d, x̂, d̂)
x← ηx̂ + (1− η)x

d← ηd̂ + (1− η)d
Update t(x)
x̂← 0
for r ∈ Z do

Dijkstra (G , r)
for s ∈ Z , (i , j) ∈ p∗rs do

d̂rs ← D+
rs (µ∗rs)

x̂ij ← x̂ij + d̂rs
end for

end for
TMF ←

∑
(r,s)∈Z2 |d̂rs − drs |

Relative Gap ← TSTT/SPTT − 1
k ← k + 1

end while
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Solution Methods
A Parting Note

I The elastic demand model is definitely more realistic than the fixed
demand case.

I But estimating demand and inverse demand functions is a challenge
and would require elaborate surveys.
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Your Moment of Zen
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