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Previously on Traffic Network Equilibrium...

Nash Equilibrium (1951)

At equilibrium, no player has an incentive to deviate.

Do nothing Detonate
Do nothing 0, 0 −3, +1
Detonate +1, −3 −2, −2

To check if a particular outcome is an equilibrium solution

1 Pick a player i

2 Fix the actions of the other players that lead to the current outcome

3 Check if player i can do better by selecting a different action

4 Repeat steps 1-3 for all players
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Previously on Traffic Network Equilibrium...

One can write an expression for the energy of the system and minimize it.

We’ll follow a similar line of thought for computing traffic equilibria because

it can scale up well.
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Previously on Traffic Network Equilibrium...

Can we reverse engineer a convex function such that the KKT con-
ditions are equivalent to the Wardrop equilibria?

Martin Beckmann, C. B. McGuire, and Christopher Winsten in 1956
discovered such a function in their seminal book Studies in the Eco-
nomics of Transportation.∑

(i ,j)∈A

∫ xij

0
tij(ω) dω

This function is commonly referred to as the Beckmann function.
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Previously on Traffic Network Equilibrium...

We can rewrite the earlier formulation purely in terms of the link flow
variables, i.e., the decision variables are the xs.

min
∑

(i,j)∈A

∫ xij

0

tij(ω) dω

s.t.
∑

j :(i,j)∈A

x rsij −
∑

h:(h,i)∈A

x rshi =


dis if i = r

−dri if i = s

0 otherwise

∀ (r , s) ∈ Z 2

xij =
∑

(r ,s)∈Z 2

x rsij ∀ (i , j) ∈ A

x rsij ≥ 0∀ (i , j) ∈ A, (r , s) ∈ Z 2

This optimization program, also called the Beckmann formulation, has

fewer variables and is easier to solve.
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Lecture Outline

1 Mixed Strategy Equilibria

2 Atomic and Non-atomic Congestion Games

3 Potential Games

4 Evolution and Learning
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Lecture Outline

Mixed Strategy Equilibria

Lecture 10 Connections with Potential Games



8/35

Mixed Strategy Equilibria
Introduction

Find the equilibrium in the following game

H T
H 1,−1 −1,1
T −1,1 1,−1

None of the four outcomes in this game (also called matching pennies) is
an equilibrium. These type of outcomes are called pure strategy equilibira.
You can imagine this game to be similar to how a goalkeeper and penalty
taker in football may behave.

But the game has an equilibrium if we allow players to randomize.
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Mixed Strategy Equilibria
Computing Mixed Equilibria

Such randomized strategies are called mixed strategy equilibria. Suppose
the row player chooses H or T with probabilities p and 1 − p. Assume
that the column player picks H or T with probabilities q and 1− q.

H T
H 1,−1 −1,1
T −1,1 1,−1

Cosider the row player.
Expected utility of selecting H = q(1) + (1− q)(−1) = 2q − 1
Expected utility of selecting T = q(−1) + (1− q)(1) = 1− 2q

If the row player randomizes, these two must be equal. (Why?)

Therefore, 2q − 1 = 1− 2q ⇒ q = 1
2 . Similarly, p = 1

2 .
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Mixed Strategy Equilibria
Computing Mixed Equilibria

Compute the pure or mixed strategy equilibria in the following game
of Rock-Paper-Scissors.

R P S
R 0,0 −1,1 1,−1
P 1,−1 0,0 −1,1
S −1,1 1,−1 0,0
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Mixed Strategy Equilibria
Notation

Just for this lecture, we will use notation that’s different from what was
used so far. These descriptors are more common in the game theory liter-
ature. We will also assume players maximize utilities.

Notation Description
Γ A Normal form game
N Set of Players (Travelers in the network)
ai ∈ Ai Pure strategies for player i (Set of all available routes)
si (ai ) The probability with which player i chooses an action ai
Si Set of all mixed strategies for player i
ui (s) Utility functions (Travel time for a given strategy)
−i Opponents of player i
BRi (s) Best responses for player i (Set of shortest paths)
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Mixed Strategy Equilibria
Definition

Definition

Given s ∈ S , the best-response correspondence of player i , denoted as
BRi (s), is defined as BRi (s) = arg maxs′i ∈Si

ui (s
′
i , s−i ).

Definition

A strategy profile s∗ ∈ S is a Nash equilibrium (NE) ⇔ s∗i ∈ BRi (s
∗),

∀ i ∈ N. Alternately, s∗ is a NE ⇔ for each player i ,
ui (s

∗
i , s
∗
−i ) ≥ ui (si , s

∗
−i )∀ si ∈ Si .
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Lecture Outline

Atomic and Non-atomic Congestion Games
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Atomic and Non-atomic Congestion Games
Non-atomic Version

The traffic assignment problem that we discussed so far is also re-
ferred to as network game or congestion game.

Recall that we assumed that flows are infinitesimally divisible. This
version is also called non-atomic congestion game.
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Atomic and Non-atomic Congestion Games
Atomic Version

Alternately, we can assume that travelers are not splittable and constrain
the flows to be integers. This version is hence also called atomic conges-
tion game.

Rosenthal in 1973 proved that an integer-version of the Beckmann formu-
lation yields a pure strategy NE to the atomic congestion game.

Consider a graph G = (V ,E ). Suppose xie is 1 if player i chooses a path

with arc e and is 0 otherwise. Let for a node v , the set of outgoing and

incoming arcs be denoted by E+(v) and E−(v) respectively.
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Atomic and Non-atomic Congestion Games
Atomic Version

Theorem

In games derived from network equilibrium models pure-strategy NE always
exist. Furthermore, any solution to the following problem is a pure-strategy NE

min
∑
e

xe∑
k=0

te(k)

s.t. xe =
∑
i

xie ∀ e ∈ E

∑
e∈E+(v)

xie −
∑

e∈E−(v)

xie =


1 ∀ i ∈ N, v = vO

i

0 ∀ i ∈ N, v ∈ V \{vO
i , v

D
i }

−1 ∀ i ∈ N, v = vD
i

xie ∈{0, 1} ∀ i ∈ N, e ∈ E

Every pure strategy NE does not necessarily solve the above optimization prob-

lem, i.e. multiple pure strategy NE may exist at least one of which may be

discovered by the above formulation.
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Lecture Outline

Potential Games

Lecture 10 Connections with Potential Games



18/35

Potential Games
Introduction

The theory of potential games generalizes the finding that solutions to
some games can be obtained by minimizing or maximizing a function.

Definition (Potential Game)

π : A→ R is a potential function and Γ is an potential game, if for every
player i and ∀ a−i ∈ A−i

ui (ai , a−i )− ui (a
′
i , a−i ) = π(ai , a−i )− π(a′i , a−i ), ∀ ai , a′i ∈ Ai

The potential function, when maximized gives the set of pure-strategy NE

(a∗ ∈ A) for each player because ui (a
∗
i , a
∗
−i ) ≥ ui (ai , a

∗
−i )⇔ π(a∗i , a

∗
−i ) ≥

π(ai , a
∗
−i ) ∀ ai ∈ Ai , i ∈ N.
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Potential Games
Example

Consider the prisoner’s dilemma.

Do nothing Detonate
Do nothing 0, 0 −3, +1
Detonate +1, −3 −2, −2

The potential for this game may be written as π =
[−2 −1
−1 0

]
For the criminals, if the civilians do nothing, 0−1 = −2− (−1) and
if they detonate, −3− (−2) = −1− 0. Check the definition for the
civilians.
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Potential Games
Example

The potential function for the prisoner’s dilemma was π =
[−2 −1
−1 0

]
.

Is the potential function unique?

Not all games are potential games! How can we identify games that
have a potential function?
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Potential Games
Identification

Definition

The sequence γ = (a1, a2, . . .) is a path in A, if ∀ k ≥ 2 ∃ a unique
i : ak = (ai , a

k−1
−i ) for some ai 6= ak−1

i ∈ Ai .

In other words, given an element of the sequence, the next strategy profile is
obtained by letting a single player deviate.

Definition

For a finite path of action profiles γ = (a1, a2, . . . , aK ), let
I (γ, u) =

∑K
k=2[uik (ak)− uik (ak−1)], where ik is the unique deviator at step k.

We say γ is closed if a1 = aK . Further, if al 6= ak for every l 6= k, then γ is
called a simple closed path (i.e., no outcome is revisited).

A path can be visualized as being traced by lattice points in a hyper-rectangle
of strategy profiles allowing motion only along the axes.

The length of a simple closed path is the number of strategy profiles in it.
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Potential Games
Identification

Theorem

The following claims are equivalent:

1 Γ is a potential game

2 I (γ, u) = 0 for every finite closed path γ

3 I (γ, u) = 0 for every finite simple closed paths γ of length 4

Note that a simple closed path of length 4 always involves only two players.

This theorem can be linked to the concept of potential used in physics.
Statement 2 is similar to idea that a body does not gain/loose potential
energy when taken along a closed path.

Also, uniqueness of the potential up to an additive constant is similar to

the fact that potential energy of a body is a function of the reference level.

Lecture 10 Connections with Potential Games



23/35

Lecture Outline

Evolution and Learning
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Evolution and Learning
Introduction

Over the last few classes we’ve characterized equilibrium solutions and
devised algorithms to compute them.

But do users actually converge to an equilibrium? If so, under what con-
ditions?

This question has been well researched both in the transportation and

economics communities.
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Evolution and Learning
Finite Improvement Property

Definition

A path γ = (a1, a2, . . .) is an improvement path if ∀ k ≥ 2,
ui (a

k) > ui (a
k−1), where i ∈ N is the deviator at step k (i.e., the

deviator is required to be strictly better off).

Definition

If every improvement path generated by such myopic players is finite,
then we say Γ has the finite improvement property(FIP).

For example, matching pennies does not have this property.
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Evolution and Learning
Finite Improvement Property

Theorem

Every finite potential game has the FIP

Proof.

For every improvement path γ, if the deviator benefits, the potential
function value improves, i.e., π(a1) < π(a2) < π(a3) < . . .. As A is finite,
the sequence γ has to be finite. �

Since atomic congestion games are finite potential games, the FIP dynamic

converges to an equilibrium solution.
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Evolution and Learning
Fictitious Play

What if all players make a move in each step?
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Evolution and Learning
Fictitious Play

Players can form beliefs about opponents (which may be treated as mixed

strategies) using frequency of past actions.

1

2

3

4

1

2

4

1

3

4

1

2

3

4

T M B

1

2

3

4

1

2

4

1

3

4

1

2

3

4

Let the choices of player i on consecutive days be T ,T ,M,B, . . ..
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Lecture 10 Connections with Potential Games



29/35

Evolution and Learning
Fictitious Play

At each stage players then best respond to these beliefs using a pure
strategy.

The fictitious play process converges to equilibrium, i.e., the sequence of
beliefs converges to the an equilibrium solution (pure or mixed).

Theorem

Fictitious play process converges to potential maximizing solutions in
finite potential games.
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Evolution and Learning
Fictitious Play

Suppose two travelers are headed from O to D.

O D

𝑥2

𝑥

2 2

The game has two pure strategy equilibria

(T ,B) and (B,T ), and a mixed strategy NE in

which each player chooses T and B with probability

1/4 and 3/4 respectively.

T B
T 4,4 1,1
B 1,1 2,2
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Evolution and Learning
Fictitious Play

t

Player i Player j
ui (T , stj ) ui (B, stj ) ati sti (T ) sti (B) uj (T , sti ) uj (B, sti ) atj stj (T ) stj (B)

1 4.000 1.000 T 1.000 0.000 4.000 1.000 T 1.000 0.000
2 2.500 1.500 B 0.500 0.500 2.500 1.500 B 0.500 0.500
3 2.000 1.667 B 0.333 0.667 2.000 1.667 B 0.333 0.667
4 1.750 1.750 B 0.250 0.750 1.750 1.750 B 0.250 0.750
5 2.200 1.600 T 0.400 0.600 2.200 1.600 T 0.400 0.600
6 2.000 1.667 B 0.333 0.667 2.000 1.667 B 0.333 0.667
7 1.857 1.714 B 0.286 0.714 1.857 1.714 B 0.286 0.714
. . . . . . . . . . .

125 1.768 1.744 T 0.256 0.744 1.768 1.744 T 0.256 0.744

∗Ties are broken in favor of the top path

t

Player i Player j
ui (T , stj ) ui (B, stj ) ati sti (T ) sti (B) uj (T , sti ) uj (B, sti ) atj stj (T ) stj (B)

1 4.000 1.000 T 1.000 0.000 4.000 1.000 T 1.000 0.000
2 2.500 1.500 B 0.500 0.500 2.500 1.500 B 0.500 0.500
3 2.000 1.667 B 0.333 0.667 2.000 1.667 B 0.333 0.667
4 1.750 1.750 B 0.250 0.750 1.750 1.750 B 0.250 0.750
5 2.200 1.600 B 0.200 0.800 1.600 1.800 T 0.400 0.600
6 2.500 1.500 B 0.167 0.833 1.500 1.833 T 0.500 0.500
7 2.714 1.429 B 0.143 0.857 1.429 1.857 T 0.571 0.429
. . . . . . . . . . .

125 3.928 1.024 B 0.008 0.992 1.024 1.992 T 0.976 0.024

∗Ties are broken arbitrarily
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Evolution and Learning
Fictitious Play

Formally, {at}∞t=1 is a fictitious play process if ∀ i ∈ N, t ≥ 1, at+1
i ∈

BRi (s
t). (best response mechanism). Let 1{.} represent an indicator

function.

st+1
i (ai ) =

t

t + 1
sti (ai ) +

1

t + 1
1{at+1

i =ai}

Does this resemble anything that we have seen so far?
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Historic Notes
Supplementary Reading

Fictitious play was first proposed in 1951 for zero-sum games. Most of the
other results that we discussed today are due to Dov Monderer and Llyod
Shapley.

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity
analysis of production and allocation, 13(1), 374-376.

Monderer, D., & Shapley, L. S. (1996). Potential games. Games and
economic behavior, 14(1), 124-143.

Monderer, D., & Shapley, L. S. (1996). Fictitious play property for games
with identical interests. Journal of economic theory, 68(1), 258-265.
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Historic Notes
Supplementary Reading

Equilibrium:
Nash (1950)
Wardrop (1952)

MSA vs Fictitious play:
Sheffi and Powell (1982)
Monderer and Shapley (1996)

Day-to-day vs Logit learning:
Cascetta (1989)

Blume (1995)
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Your Moment of Zen
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