CE 269
Traffic Engineering

Lecture 9

Shock Waves




Previously on Traffic Engineering

In the conservation law k; + g, = 0, suppose f'(k) = c, a constant. Then,

the PDE in terms of density can be written as

kt + Ckx == 0
k(0, x) = ko(x)

Suppose the density on the road at time t = 0 is given (Cauchy problem).
As before, we are interested in finding the value of density at every (t, x).

Instead, suppose we try to estimate the density along a curve x = x(t).

dk(t,x(t)) _ Okdt Ok dx(t)
dt T 9tdt Ox dt
dx(t)k

dt

:kt+
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= ¢, what is
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Previously on Traffic Engineering

Hence, the total time derivative of the density is constant along a curve

x = x(t) if dz(tt) =c.

In other words, the value of the density is constant along a straight line
with slope ¢, i.e., along x(t) = ct + x(0) = ct + xo.

Hence, to compute density at a point (t*, x*), draw the characteristic curve
with slope ¢ and look where it intersects the y axis. That is,

k(t*,x*) = k(0,x* — ct*) = ko(x" — ct*)

Notice that this solution is in the form of a traveling wave. Which funda-
mental diagram is suited for this framework?
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Previously on Traffic Engineering

For the previous PDE, all characteristics have the same slope ¢ and are
parallel to each other. The density along these characteristics is same as
the initial value.

Initial condition
) Characteristic curve
Initial condition §‘

Characteristic curve

Characteristic Characteristic

Instead, suppose c is a function of k, i.e., we have a different fundamental
diagram where ¢ = c(k(t, x)).
dx(t)
dt
The characteristics in this case are straight lines but need not be parallel.

= C(k(t,X)) = X = C(ko(Xo))t + Xo

Lecture 9
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Previously on Traffic Engineering

At x;, one cannot accommodate more vehicles than what is sent from
upstream, the capacity, and what can be received downstream.

N5 T M)

Cumulative flow, N

N1, x) 3y

Time, ¢
Upstream arrival ~ Local capacity Downstream queue
N (t,x;) NO(t,x) N(1,x,)
— . -«
® & @ Traffic
X1 X X+l

Hence, the cumulative count is the lowest of all the three conditions

N(t,x;) = min {N“P(t, %), NO(t, x7), Nd”(t,Xj)}
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Lecture Qutline

Newell's Method
Shock Waves

Queue Analysis
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Lecture Qutline

Newell’s Method
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Newell’s Method

When density is less than the critical density, f' > 0 and traffic is in the
uncongested regime. These type of states propagate downstream.

For congested regions, f/ < 0 and these states propagate upstream.

Note that with the method of characteristics, if we knew f’ to draw a
characteristic and read-off the density at the initial or boundary.

But to get ' we need the density in the first place. Recall from the Green's
theorem version of the conservation equation,

/ qdt — kdx = N(tg,Xg) — N(tl,Xl)
JC

* We will use two sets of notation in this lecture since the material is from both Boyles et al. (2020) and Ni (2015).
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Newell’s Method

Suppose we draw a characteristic C from (t,x) to (to,xp). Since C is a
characteristic, dx/dt = f'(k) and k and q are constant. Therefore,

N(t,x) = N(to,xo) +/ qdt — kdx
c

— N(to, x0) + /C(q K (K))dt
= N(to, x0) + (g — kf'(k))(t — to)

But since k(t, x) is not known, we do not know the second part of the
above expression. The true value turns out to be the lowest possible value
given by

N(t:x) = inf {N(tk,xk) + (g — kF'(K))(t — tk)}
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Newell’s Method

For the case of the triangular fundamental diagram, we have only two
characteristics to deal with and the correct cumulative count is obtained
from the most restrictive initial/boundary conditions.

Case I: If f" = wr, g = kwr and hence
N(LX) = N(tu,Xu)

That is, we trace the same vehicle as we move along the characteristics.

Case Il: If " = wp, k + q/wp = kj, and hence

N(t,x) = N(tc,xc)+ (g + kwp)(t — tc)
(tc,Xc) + kJ‘W(t — tc)
(tc, xc) + ki(xc — x)

In this case, the cumulative count increases at the rate of the jam density.

N
N
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Newell’s Method

Thus, for any (t, x),

N(t, x) = min {/v(tu.,xu), N(tc,xc) + ki(xc — x)}

Instead of tracking the cumulative counts, we could draw characteristics
and work with densities.

But as we will see shortly, shock waves can make this procedure difficult.
This approach on the other hand can be applied oblivious to the existence
of shock waves.
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Newell’s Method

Suppose f(k) = min{k, 120 — k/2}, and vehicles on a 1-mile stretch are
initially in an uncongested state with a flow of 48 veh/min.

If at t = 0, the outflow was suddenly stopped because of a red light, find
the cumulative count at the points A, B, and C

q xuénﬁn
(veh/min) 1 | G
G e
1/2 A
3/8H
D £ t (min)

784 12 34 1
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Lecture Qutline

Shock Waves
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Expansion Waves

Suppose the slope of the characteristics is a function of density. Then we
many encounter the following scenario which produces expansion waves.
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Shock Waves

Likewise, if the characteristics move closer to each other over time, they
produce compression waves.

=1y x

However, in this case, they may intersect and the function will become
multi-valued. This is also referred to as a gradient catastrophe.

Lecture 9
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Shock Waves

Shock waves on the other hand are said to form when densities are discon-
tinuous. Consider the following scenario where the densities at some of the
regions are unique but the characteristics meet in the range of influence.

Congested

Uncongested

Characteristics in such cases intersect at many points. However, the loca-
tions at which the shock wave forms is unique and is dictated by Rankine-
Hugonoit Jump Condition.
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RH Condition

Specifically, if xs(t) is the shock path,

dxs _ q(t,x") —q(t, x7)
dt  k(t, xs) k(t,xs)

Draw the characteristics and the shock path for the following scenario

ki +9x =0
q=K/2
k(0,x) =1 if x <0 and 0 otherwise
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RH Condition

X .
Kinematic
Characteristics Jeve
Shock
= 172 wave
ot
S\
Kinematic
wave
< J t
<&, 1
~ <é°
&7
&

Resolve the previous problem but let the initial conditions be k(0,x) =
0 if x <0 and 1 otherwise
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Shock Waves

A fan on characteristics and a rarefaction wave are created in this case.
The density in the wedge is 0 but there could be multiple characteristics
that give the same solution.

ko 1 O — ¢ ko 1 0 = ¢

Ee=t) =ty =ty t=t,—

A unique set of characteristics can be generated as shown in the figure on
the right using an entropy condition.
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RH Condition

Are the slopes of the characteristics always constant? Are the slopes of
the shock waves constant?
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LWR Model

In case of the LWR model, the speeds of the shock waves can be related
to the fundamental diagram.
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LWR Model

The shock path indicates the last car that enters the slow moving traffic
and separates the two density regions.
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Shock Waves

Consider a signal at junction and assume a fundamental diagram as shown.

Space

Time

How does the density change along the highlighted cross section and where
are these points on the fundamental diagram? Can we derive the RH
condition using the speed of the shock wave. 23/20



Shock Waves

Using the Greenshields fundamental diagram and vf = 60 kmph and k; =
240 vehicles per km, find the density at (0.5 h, 25 km) and (1 h, 65 km)

for the following initial conditions

K(0, %) = 40 vphif 0 < x <10
7] 20 vphif x > 10

Repeat by switching the density values in the two regions.
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Example

40 (1, 65)
1, 65, s
. (1,65) x P
_Shock
) ) / by
V
/'//2, 25) 1112, 25)
S 10 g[ 10

= I I . < 12 1 P
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Lecture Qutline

Queue Analysis
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Bottleneck

Shock waves can also merge with other shock waves. In the following
example, find the length of the queue that forms due to the bottleneck.

2

g  —— Capacity

&[] | E—
Flow — 10:00
2400 g v
2200 H f ”
ﬁ/’ Ll a

oo
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ln / ;
10004 // / N
00 ¥
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200 / /‘“

O 20 40 60 80 100 120 140 160 180 200 Density

o -
Time, ¢

Condition g (vehicles/h) k (vehicles/km) v (km/h)

A 600 8.57 70
B 2000 40 50
D 1400 215 65
D’ 1400 130 10.8
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Queue Analysis

A truck moving at 13.3 kmph enters a highway at 2:30 PM and leaves
it 6.67 km from the entry point. Find the duration for which the truck’s

effect on the traffic is noticeable.

Flow
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A 700
B 1600
C 2200
[¢] 0
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B
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B 4
2:30 pm Time
v (km/h)
10 70
120 13.3
60 36.7
0 75
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Your Moment of Zen

Another one of those fundamental diagrams!
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