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Previously on Traffic Engineering

In the conservation law kt +qx = 0, suppose f ′(k) = c , a constant. Then,
the PDE in terms of density can be written as

kt + ckx = 0

k(0, x) = k0(x)

Suppose the density on the road at time t = 0 is given (Cauchy problem).
As before, we are interested in finding the value of density at every (t, x).

Instead, suppose we try to estimate the density along a curve x = x(t).

dk(t, x(t))

dt
=
∂k

∂t

dt

dt
+
∂k

∂x

dx(t)

dt

= kt +
dx(t)

dt
kx

If dx(t)
dt = c , what is dk

dt ?
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Previously on Traffic Engineering

Hence, the total time derivative of the density is constant along a curve

x = x(t) if dx(t)
dt = c .

In other words, the value of the density is constant along a straight line
with slope c , i.e., along x(t) = ct + x(0) = ct + x0.

Hence, to compute density at a point (t∗, x∗), draw the characteristic curve
with slope c and look where it intersects the y axis. That is,

k(t∗, x∗) = k(0, x∗ − ct∗) = k0(x∗ − ct∗)

Notice that this solution is in the form of a traveling wave. Which funda-
mental diagram is suited for this framework?
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Previously on Traffic Engineering

For the previous PDE, all characteristics have the same slope c and are
parallel to each other. The density along these characteristics is same as
the initial value. Waves 99
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Example 6
In this example, c explicitly depends on x and or t—for example, c = t.
The equation of the characteristic is derived from the following ordinary
differential equation:

dx(t)

dt
= c = t.

After integration, one obtains x = 1
2 t

2 + A, where A is an integral
constant. In this case, the characteristic is no longer a straight line, but is a
parabola. In addition, characteristics drawn from different time-space points
are no longer parallel. Instead, they may intersect.
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Example 6
In this example, c explicitly depends on x and or t—for example, c = t.
The equation of the characteristic is derived from the following ordinary
differential equation:

dx(t)

dt
= c = t.

After integration, one obtains x = 1
2 t

2 + A, where A is an integral
constant. In this case, the characteristic is no longer a straight line, but is a
parabola. In addition, characteristics drawn from different time-space points
are no longer parallel. Instead, they may intersect.

Instead, suppose c is a function of k , i.e., we have a different fundamental
diagram where c = c(k(t, x)).

dx(t)

dt
= c(k(t, x))⇒ x = c(k0(x0))t + x0

The characteristics in this case are straight lines but need not be parallel.
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Previously on Traffic Engineering

At xj , one cannot accommodate more vehicles than what is sent from
upstream, the capacity, and what can be received downstream.Simplified Theory of Kinematic Waves 159
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Figure 10.5 The minimum principle.

10.5 MINIMUM PRINCIPLE

Intuitively, the minimum principle means that any point on a roadway
xj cannot admit more vehicles than arrive from an upstream location
Nup(t, xj), which is allowed by local capacity NQ(t, xj), and which the
downstream location is able to receive Ndn(t, xj). Graphically, this involves
superimposing the above three curves on a single graph, and the cumulative
flow that actually passes xj, N(t, xj) is the lower envelope of the three (see
Figure 10.5):

N(t, xj) = min{Nup(t, xj),N
Q(t, xj),N

dn(t, xj)}.

10.6 SINGLE BOTTLENECK

In Figure 10.5, if there is an on-ramp at xj, the location slightly downstream
(to the right of xj), x

+
j , may be a bottleneck since both traffic streams

from the upstream mainline and the on-ramp meet here. To keep track
of arrival and departure flows, cumulative flow N(t, x) will be replaced by
two notations:
• cumulative arrival flow A(t, x), which denotes cumulative flow having

arrived at location x by time t waiting to pass x, and
• cumulative departure flow D(t, x), which denotes cumulative flow

having departed location x by time t.

Hence, the cumulative count is the lowest of all the three conditions

N(t, xj) = min
{
Nup(t, xk),NQ(t, xj),N

dn(t, xj)
}
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Lecture Outline

1 Newell’s Method

2 Shock Waves

3 Queue Analysis
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Lecture Outline

Newell’s Method

Lecture 9 Shock Waves



8/29

Newell’s Method
Continued

When density is less than the critical density, f ′ > 0 and traffic is in the
uncongested regime. These type of states propagate downstream.

For congested regions, f ′ < 0 and these states propagate upstream.

Note that with the method of characteristics, if we knew f ′ to draw a
characteristic and read-off the density at the initial or boundary.

But to get f ′ we need the density in the first place. Recall from the Green’s
theorem version of the conservation equation,∫

C

qdt − kdx = N(t2, x2)− N(t1, x1)

* We will use two sets of notation in this lecture since the material is from both Boyles et al. (2020) and Ni (2015).
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Newell’s Method
Theory

Suppose we draw a characteristic C from (t, x) to (t0, x0). Since C is a
characteristic, dx/dt = f ′(k) and k and q are constant. Therefore,

N(t, x) = N(t0, x0) +

∫
C

qdt − kdx

= N(t0, x0) +

∫
C

(q − kf ′(k))dt

= N(t0, x0) + (q − kf ′(k))(t − t0)

But since k(t, x) is not known, we do not know the second part of the
above expression. The true value turns out to be the lowest possible value
given by

N(t, x) = inf
k∈[0,kj ]

{
N(tk , xk) + (q − kf ′(k))(t − tk)

}

Lecture 9 Shock Waves
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Newell’s Method
Theory

For the case of the triangular fundamental diagram, we have only two
characteristics to deal with and the correct cumulative count is obtained
from the most restrictive initial/boundary conditions.

Case I: If f ′ = wf , q = kwf and hence

N(t, x) = N(tU , xU)

That is, we trace the same vehicle as we move along the characteristics.

Case II: If f ′ = wb, k + q/wb = kj , and hence

N(t, x) = N(tC , xC ) + (q + kwb)(t − tC )

= N(tC , xC ) + kjw(t − tC )

= N(tC , xC ) + kj(xC − x)

In this case, the cumulative count increases at the rate of the jam density.
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Newell’s Method
Theory

Thus, for any (t, x),

N(t, x) = min
{
N(tU , xU),N(tC , xC ) + kj(xC − x)

}
Instead of tracking the cumulative counts, we could draw characteristics
and work with densities.

But as we will see shortly, shock waves can make this procedure difficult.
This approach on the other hand can be applied oblivious to the existence
of shock waves.
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Newell’s Method
Example

Suppose f (k) = min{k , 120 − k/2}, and vehicles on a 1-mile stretch are
initially in an uncongested state with a flow of 48 veh/min.

If at t = 0, the outflow was suddenly stopped because of a red light, find
the cumulative count at the points A, B, and C

10.4. ELEMENTARY TRAFFIC FLOW THEORY 385
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Figure 10.22: Example of the Newell-Daganzo method.

The first step is to establish a coordinate system. As always, we set x = 0
at the upstream end of the link. For this problem, it will be convenient to set
t = 0 at the time when the obstruction begins, and to count vehicles starting
from the first vehicle stopped at the obstruction, that is, N(1, 0) = 0. This
way, N(x, t) will immediately give the number of vehicles between point x and
the obstruction at time t. Next, we use the given data from the problem to
construct initial and boundary conditions where we already know N(x, t). Since
no vehicles can pass the obstruction, we know that N(1, t) = 0 for all t. Since
the link is initially uncongested at a flow rate of 48 veh/min, the fundamental
diagram (10.49) gives the initial density to be 48 veh/mi. Therefore, the initial
condition is N(x, 0) = 48 − 48x, and the vehicle number at the origin of the
coordinate system is 48. Since vehicles continue to enter the link at a rate of 48
veh/min, we have N(0, t) = 48 + 48t along the upstream boundary of the link.
The three points where we must calculate N(x, t) are labeled as A, B, and C in
the right panel of Figure 10.22.

We start with point A, half a mile upstream of the obstruction and 30
seconds after it begins. There are two possible characteristics at this point,
one with slope +1 (corresponding to uncongested conditions) and one with
slope − 1

2 (corresponding to congested conditions). We can trace back these
characteristics until they reach a point where N(x, t) is known, in this case
an initial or boundary condition. These points of intersection are labeled D
and E in Figure 10.22. From the initial condition, we know that N(D) = 48
and N(E) = 12. Along the uncongested characteristic, there is no change in
the cumulative count, while along the congested characteristic the cumulative
count increases at a rate of kj = 240 veh/mi for each mile traveled. Therefore,
equation (10.43) tells us that N(A) = 48 + 0 = 48 if point A is uncongested,
while equation (10.44) tells us that N(A) = 12 + 1

4240 = 72 if point A is
congested. The correct value is the smaller of the two: N(A) = 48, and this
point is uncongested (the queue has not yet reached this point).

We next move to point B, an eighth of a mile upstream of the obstruction
and 60 seconds after it begins. Tracing back the two possible characteristics
from point B leads us to the points labeled F and G, and from the boundary
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Lecture Outline

Shock Waves
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Shock Waves
Expansion Waves

Suppose the slope of the characteristics is a function of density. Then we
many encounter the following scenario which produces expansion waves.

Shock and Rarefaction Waves 105

be a valid function. Consequently, the solution beyond the break time will
be problematic. The purpose of this chapter is to address such an issue.

The above example illustrates a family of characteristics moving closer
and closer over time, so they form a compression wave. The opposite case
is a family of characteristics moving farther and farther apart without
any intersection (see Figure 7.3); such a wave is called an expansion wave.
The corresponding time development of the solution profile is shown in
Figure 7.4. It can be seen that the bottom dot moves faster than the top dot
in this case, and the solution profile becomes thinned out or rarefied.
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Shock Waves
Compression Waves

Likewise, if the characteristics move closer to each other over time, they
produce compression waves.

104 Traffic Flow Theory
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Figure 7.1 A gradient catastrophe.
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Figure 7.2 Top of profile overtakes bottom of profile.

When the two characteristics intersect at point C, the solution profile will
have an infinite gradient at this point. The formation of such an infinite
gradient is called a gradient catastrophe, and the time when infinite gradient
occurs is called the break time tb. Figure 7.2 presents a few frames of time
development of the solution profile. Notice that the top dot of the profile
moves faster than the bottom dot. Sooner or later, the top dot will catch
up with the bottom dot at the break time, creating a gradient catastrophe.
After this, the top dot runs over the bottom dot, and the profile ceases to
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When the two characteristics intersect at point C, the solution profile will
have an infinite gradient at this point. The formation of such an infinite
gradient is called a gradient catastrophe, and the time when infinite gradient
occurs is called the break time tb. Figure 7.2 presents a few frames of time
development of the solution profile. Notice that the top dot of the profile
moves faster than the bottom dot. Sooner or later, the top dot will catch
up with the bottom dot at the break time, creating a gradient catastrophe.
After this, the top dot runs over the bottom dot, and the profile ceases to

However, in this case, they may intersect and the function will become
multi-valued. This is also referred to as a gradient catastrophe.
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Shock Waves
Discontinuities

Shock waves on the other hand are said to form when densities are discon-
tinuous. Consider the following scenario where the densities at some of the
regions are unique but the characteristics meet in the range of influence.

Uncongested

Congested

𝑡

𝑥

Characteristics in such cases intersect at many points. However, the loca-

tions at which the shock wave forms is unique and is dictated by Rankine-

Hugonoit Jump Condition.
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Shock Waves
RH Condition

Specifically, if xs(t) is the shock path,

dxs
dt

=
q(t, x+s )− q(t, x−s )

k(t, x+s )− k(t, x−s )

Draw the characteristics and the shock path for the following scenario

kt + qx = 0

q = k2/2

k(0, x) = 1 if x ≤ 0 and 0 otherwise

Lecture 9 Shock Waves
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Shock Waves
RH Condition

108 Traffic Flow Theory

is a known point on the shock path. According to the Rankine-Hugonoit
jump condition, the slope of the shock path is

dxs
dt

= q(t, x+
s ) − q(t, x−

s )

k(t, x+
s ) − k(t, x−

s )
= 0 − 1/2

0 − 1
= 1

2
.

Therefore, the shock path is a straight line which starts from the origin
with constant slope 1

2—that is,

xs(t) = 1
2
t.

Therefore, the solution is

k(t, x) =
{
1 if x ≤ 1

2 t,

0 if x > 1
2 t.

The solution is illustrated in Figure 7.7. Also illustrated are a few
concepts discussed before: a characteristic is a line along which the solution
k remains constant; a kinematic wave is a family of straight, parallel
characteristics, and a shock wave separates two kinematic waves with an
abrupt change of the k value; a shock path is the projection of shock
locations onto the x-t plane.

Characteristics

X
k 0

Chara
cte

ris
tic

s

Kinematic
wave

Shock path

Kinematic
wave

t

1

1/2

1

0
Shock
wave

Figure 7.7 An example of a shock path.

Resolve the previous problem but let the initial conditions be k(0, x) =

0 if x ≤ 0 and 1 otherwise
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Shock Waves
RH Condition

A fan on characteristics and a rarefaction wave are created in this case.
The density in the wedge is 0 but there could be multiple characteristics
that give the same solution.

Shock and Rarefaction Waves 109

7.3 RAREFACTIONWAVES

If the initial condition in the above example is reversed1—that is,

k(0, x) = k0 =
{
0 if x ≤ 0,

1 if x > 0,

characteristics of this PDE should be drawn as in Figure 7.8. In this case, the
two families of characteristics go farther and farther apart, leaving an empty
wedge-shaped area in between. Since a characteristic carries a constant k
solution, areas swept by characteristics will have solutions. An empty area
in the solution space means there is no solution in this area. To resolve this
issue, there should be a means to fill the empty area with characteristics.

If one relaxes the step function of the initial condition by assuming that
k0 varies smoothly from 0 to 1 over a small distance �x (see Figure 7.9),
the slopes of characteristics drawn in �x will gradually increase from 0 to
1 so that any point in the solution space is swept by one and only one
characteristic.

To return to the step function of the initial condition, one takes the limit
�x → 0, so Figure 7.9 reduces to Figure 7.10. Now the empty area is filled
with a fan of characteristics drawn from the origin. If one cuts the solution
space with a few planes t = t0, t1, t2, . . ., with t0 passing the origin and other
planes at consequently later times, one obtains a time development of the
solution as shown in Figure 7.11. Notice that the profile of the solution is
thinned out or rarefied as time moves on. Hence, this fan of characteristics
represents a rarefaction wave.

x

tk0 1 0

Figure 7.8 Characteristics without an intersection.

1 The following discussion is derived from Ref. [23] with modifications.

110 Traffic Flow Theory
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Figure 7.9 Filling an empty area with characteristics.
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Figure 7.10 A rarefaction wave.
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Figure 7.11 Time development of the rarefaction wave.

A unique set of characteristics can be generated as shown in the figure on

the right using an entropy condition.
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Shock Waves
RH Condition

Are the slopes of the characteristics always constant? Are the slopes of

the shock waves constant?
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Shock Waves
LWR Model

In case of the LWR model, the speeds of the shock waves can be related
to the fundamental diagram.

LWR Model 123

Consider the following LWR model with a general q-k relationship:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

kt + qx = 0,

q = Q(k),

k(t, 0) = k0(x) =
{
A if x ≤ 0,

B if x > 0,

(8.3)

where the underlying q-k relationship is given in Figure 8.3, where
A denotes an operating point characterized by flow qA, density kA, and
speed vA, and similar notation applies to point B. A time-space diagram
is constructed below the q-k relationship with the initial condition at the
side. Since this is a Riemann problem, each kinematic wave has a constant
slope, and the shock path will be a straight line. From the initial condition,
there are two kinematic waves: kinematic wave A emitted from x ≤ 0, and
kinematic wave B emitted from x > 0. The speed of kinematic wave A is

k

q
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kBkA
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UAB
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k 0 t
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Figure 8.3 Example: LWRmodel with a general q-k relationship.
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Shock Waves
LWR Model

The shock path indicates the last car that enters the slow moving traffic
and separates the two density regions.

LWR Model 125
k 0

k B

k A

x

UAB

t

Figure 8.4 Shock path and queue tail.

example, one can construct the solution directly by drawing a line from the
origin with slope UAB. This line is the shock path and also the queue tail
which separates regions with conditions A and B.

8.7 PROPERTIES OF THE FLOW-DENSITY RELATIONSHIP

It can be seen from the above example that the flow-density (q-k) rela-
tionship is very illustrative to show various speeds. Figure 8.5 gives the full
picture.
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Figure 8.5 Speeds in a flow-density relationship.
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Shock Waves
LWR Model

Consider a signal at junction and assume a fundamental diagram as shown.

Time

Sp
ac
e

How does the density change along the highlighted cross section and where

are these points on the fundamental diagram? Can we derive the RH

condition using the speed of the shock wave.
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Shock Waves
LWR Model

Using the Greenshields fundamental diagram and vf = 60 kmph and kj =
240 vehicles per km, find the density at (0.5 h, 25 km) and (1 h, 65 km)
for the following initial conditions

k(0, x) =

{
40 vph if 0 < x ≤ 10

20 vph if x > 10

Repeat by switching the density values in the two regions.
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Shock Waves
Example

120 Traffic Flow Theory

1/2k 0

(1/2, 25)
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x

40
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(1, 65)
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40

1 t

Figure 8.1 Example: LWR with Greenshields model.

per hour. Point (t = 1
2 , x = 25) is within this area, and the characteristic

passing this point intercepts the x-axis at (0, 5). Hence, k(12 , 25) = k(0, 5) =
40 vehicles per mile. Similarly, All characteristics drawn from x > 10 miles
have slope c = 50 miles per hour, and point (t = 1, x = 65) is within this
area. The characteristic passing this point intercepts the x-axis at (0, 15).
Hence, k(1, 65) = k(0, 15) = 20 vehicles per mile.

8.3 SHOCKWAVE SOLUTION TO THE LWRMODEL

The above example actually involves two platoons: a fast one running in
front and a slow one trailing behind. Each platoon corresponds to a family of
characteristics called a kinematic wave. The characteristics of the fast platoon
have a slope of 50 miles per hour, which is the speed of the fast kinematic
wave. Similarly, the speed of the slow kinematic wave is 40 miles per hour.
Noticeably, there is a wedge between the two families of characteristics
starting from (0, 10), meaning there is an increasing “vacuum” (or gap)
between the two platoons.

If the two platoons are reversed—that is, the slow platoon leads the fast
platoon, sooner or later the fast platoon will catch up with the slow platoon.
When this occurs, the first vehicle in the fast platoon will have to adopt
the speed of the last vehicle in the slow platoon. Shortly afterward, the
second vehicle in the fast platoon will have to slow down, and so will the
third vehicle, the fourth vehicle, and so on. The “slowing down” effect will
propagate backward along the fast platoon. The propagation of a sudden
change of traffic condition (e.g., speed drop in this example) creates a shock
wave which delineates regions of different traffic conditions (e.g., slow and
fast traffic in this example). The trajectory of the shock wave in the x-t plane
is called a shock path.

LWR Model 121

As discussed in the method of characteristics, a characteristic carries a
constant k value (i.e., density), and the intersection of two characteristics
will inevitably have two k values. This means that at this point two traffic
conditions coexist, and after the intersection, the two platoons resume
their original conditions along their respective characteristics. This situation
does not make any physical sense. To develop a solution that is physically
meaningful, one has to make the solution piecewise smooth. This requires
that a characteristic carries one and only one traffic condition (e.g., a k
value). When two characteristics meet, both characteristics terminate, and
there is a jump (or shock) at the intersection.

To illustrate the idea, the previous example is revisited with the fast
platoon being behind. In the x-t plane in Figure 8.2, two families of
characteristics—that is, two kinematic waves—are drawn, but this time
those characteristics drawn between 0 < x < 10 will have a slope of 50,
while those drawn from x > 10 have a slope of 40. Since the fast kinematic
wave is behind, it will catch up with the slow kinematic wave—that is, the
two families of characteristics will intersect. Whenever two characteristics
intersect, they terminate at their intersection. A curve that connects these
intersections gives a shock path, along which two regions are delineated:
one region belongs to the slow platoon—that is, all points in this region
carry the condition of the slow platoon—and the other region belongs to
the fast platoon—that is, all points in this region carry the condition of the
fast platoon. When one moves across the shock path, the traffic condition
changes suddenly from one condition to another—that is, experiencing a
shock, which is how a shock wave gets its name. Therefore, it is convenient
to read from Figure 8.2 that k(12 , 25) = k(0, 0) = 20 vehicles per mile and
k(1, 65) = k(0, 25) = 40 vehicles per mile.
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40
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Figure 8.2 Example: LWR with Greenshields model revisited.
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Lecture Outline

Queue Analysis
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Queue Analysis
Bottleneck

Shock waves can also merge with other shock waves. In the following
example, find the length of the queue that forms due to the bottleneck.

LWR Model 129
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Figure 8.7 A highway bottleneck with varying traffic demand.
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Figure 8.7 A highway bottleneck with varying traffic demand.

128 Traffic Flow Theory

Table 8.1 Traffic data: a bottleneck with varying traffic
demand
Condition q (vehicles/h) k (vehicles/km) v (km/h)

A 600 8.57 70
B 2000 40 50
D 1400 21.5 65
D’ 1400 130 10.8

Density, k

Fl
ow

, q

O

A

B

wa

wb

qb

kb

wbkb

ka

waka

qa

A’ B’

B”

A”

Uab

Figure 8.6 Traffic flow observed by a moving observer.

Solution. With the aid of the graphical construction in Figure 8.7, the
rate at which the queue grows is:

UBD′ = qD′ − qB
kD′ − kB

= 1400 − 2000

130 − 40
= −600

90
= −6.67 km/h.

The queue tail extends back at this rate for 1 h, so the farthest point it
reaches is 6.67 km upstream of the bottleneck. The rate at which the queue
dissipates is

Lecture 9 Shock Waves
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Queue Analysis
Moving Bottleneck

A truck moving at 13.3 kmph enters a highway at 2:30 PM and leaves
it 6.67 km from the entry point. Find the duration for which the truck’s
effect on the traffic is noticeable.LWR Model 131
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Figure 8.8 A moving bottleneck with constant demand.

LWR Model 131

2:30 pm

Sp
ac

e

Time

Flow

2400

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

A

C

B

A

B

UOB

UAB

UAO

O UCB

Cc UAC

6.
67

 k
m

a

b

d

e f

Figure 8.8 A moving bottleneck with constant demand.

130 Traffic Flow Theory

Table 8.2 Traffic data: a moving bottleneck

Condition q (vehicles/h) k (vehicles/km) v (km/h)

A 700 10 70
B 1600 120 13.3
C 2200 60 36.7
O 0 0 75

UAD′ = qD′ − qA
kD′ − kA

= 1400 − 600
130 − 8.57

= 6.60 km/h.

So the time needed to dissipate the queue is 6.67
6.60 = 1.01 h, and the total

time for which the queue persists is 2.01 h.

8.8.2 AMoving Bottleneck
A freeway was initially operating under condition A (see Table 8.2). At
2:30 p.m., a sluggish truck entered the freeway traveling at a speed of
13.3 km/h. The truck turned off the freeway at the next exit 6.67 km away.
Find when the impact of the truck will disappear.

Solution. With the aid of the graphical construction in Figure 8.8, the
following can be calculated:

UOB = qB − qO
kB − kO

= 1600 − 0

120 − 0
= 13.30 km/h,

UAB = qB − qA
kB − kA

= 1600 − 700
120 − 10

= 8.18 km/h,

UCB = qB − qC
kB − kC

= 1600 − 2200

120 − 60
= −10.00km/h,

be
ae

= UOB → ae = be
UOB

= 6.67
13.3

= 0.5 h,

cd
bc

= UCB → cd = UCB × bc = 10bc,

df
af

= UAB → df = UAB × af = 8.18af ,

Lecture 9 Shock Waves
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Your Moment of Zen

Another one of those fundamental diagrams!

Lecture 9 Shock Waves


