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Method of Characteristics



Previously on Traffic Engineering

Under the continuum approximation assumption, we treat N(t,x) as a
continuous function. Hence, we can define its partial derivatives.
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For a continuous function, we can write
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Previously on Traffic Engineering

Having the fundamental diagram now gives us three sets of equations,
which when solved will give the speed, density, and flow in the domain of
interest.

qg = kv

Ok 99 __

ot tax =0

q=f(k)

Plugging the fundamental diagram equation in the conservation law, we
get a PDE purely in terms of the density

ok Of(k)
EJF Ox =0
Ok ;o Ok
E+f(k)$ =0

This equation is also called first-order hyperbolic conservation law
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Previously on Traffic Engineering

Solving the PDE requires some knowledge of the density function. This is
prescribed in one or more of the following ways:

T Downstream Boundary Condition

Initial Condition
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Waves
Characteristics
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Waves
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Waves

Traffic on highways are known to exhibit wave-like phenomenon.

Can we find analytical solutions to the conservation equation that also
capture such patterns?



Waves

Simple PDEs can be classified into different classes of equations (Trans-
port, Laplace, Heat, Wave equations etc.)

Many equations have solutions of the form k(t,x) = f(x — ct), which is
called a traveling wave.

For positive ¢, k(t,x) = f(x — ct) travels right over time and k(t,x) =
f(x + ct) travels left.
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Wave fronts

A traveling wave is called a wave front if

ke X — —00
k(t’X): ko X — 0

If k1 = ko, the solution is called a pulse.

ki
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Waves

Wave equations typically have solutions which are sum of traveling waves
of the following form

k(t,x) = F(x — ct) + G(x + ct)

Solve the following wave equation for x € (—o00,00),t > 0 with the given
set of initial conditions

ket = C2kxx
k(0,x) = f(x)
ke(0,x) = g(x)
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Waves

From the initial conditions on k,
k(0,x) = F(x) + G(x) = f(x)
From the initial conditions on ki,
ke(0,x) = —cF'(x) + ¢G'(x) = g(x)

Integrating from 0 to x,

CF(x) + 6(x) — (—F(0) + G(0)) = * / " e(y)dy

C

Solving for F(x) and G(x) and plugging it into the form of the general
solution,

k(t,x) = F(x — ct) + G(x + ct)

1 1 x+ct
=5 f(x —ct)+ f(x+ ct)} + e /X_Ct g(y)dy

11/27



Waves

From the above equation, if we want the value of k at (t*, x*),

1 1 x*+ct*
k(t", x*) = 5 k(0,x* — ct™) + k(0,x* + ct*)] + Z/ g(y)dy
xX* —ct*

Domain of dependence Range of influence

I x¥tet* ¥

x*ct*

To find k, we need two initial values and g defined on the interval [x* —
ct*, x*+ct*]. This interval is called the domain of dependence of (t*, x*).

Likewise, we can define the range of influence as the points affected by
the domain of dependence.
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Waves

The lines with slopes ¢ and —c which help construct the domain of de-
pendence and range of influence are called characteristics.

Using the characteristics, find the solution to the following wave equation
for x, t € (0, 00):

ki = 4k
k(0,x) =1 if x € [0,1] and O otherwise
kt((),X) - 0
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Example

1

A
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Characteristics

In the conservation law k; + g = 0, suppose f'(k) = c, a constant. Then,
the PDE in terms of density can be written as

kt + Ckx == O
k(0, x) = ko(x)

Suppose the density on the road at time t = 0 is given (Cauchy problem).
As before, we are interested in finding the value of density at every (t, x).

Instead, suppose we try to estimate the density along a curve x = x(t).

dk(t,x(t)) _ Okdt Ok dx(t)
dt T 9tdt Ox dt

dx(t)

=k
S

dx(t) _ e dko
If 4~ = C, what is %7
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Characteristics

Hence, the total time derivative of the density is constant along a curve

x = x(t) if d);(tt) =c.

In other words, the value of the density is constant along a straight line
with slope ¢, i.e., along x(t) = ct + x(0) = ct + xo.

Hence, to compute density at a point (t*, x*), draw the characteristic curve
with slope ¢ and look where it intersects the y axis. That is,

k(t*,x*) = k(0,x* — ct™) = ko(x™ — ct*)

Notice that this solution is in the form of a traveling wave. Which funda-
mental diagram is suited for this framework?
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Example

Using the method of characteristics, find the solution to the following
conservation law at (t*,x*) = (3,10)

ke + 2k, =0
k(0,x) =2x*+5
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Characteristics

For the previous PDE, all characteristics have the same slope ¢ and are
parallel to each other. The density along these characteristics is same as
the initial value.

Initial condition
. Characteristic curve
Initial condition {

Characteristic curve

Characteristic Characteristic

Instead, suppose c is a function of k, i.e., we have a different fundamental
diagram where ¢ = c(k(t, x)).
dx(t)
dt
The characteristics in this case are straight lines but need not be parallel.

= C(k(t,X)) = X = C(ko(Xo))t + Xo

Lecture 8
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Newell’s Method

The earlier analysis applies to scenarios where the slope of the flow-density
relationship is constant.

Uncongested Congested
conditions A conditions
\ /

Density, k k

Gordon Newell extended this idea to triangular fundamental diagrams
where the slopes are constant but can take two possible values depending
on the density (congested or uncongested regions)

However, we do not know the traffic regime upfront to directly use the
corresponding c value.
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Forward Wave
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Backward Wave
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N(t,x) = N(t — T, x11) + kj(x41 — x;)
Xj41 — Xj
=N (t - Lv’%l) + ki(Xj+1 — %))
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Capacity Conditions

NO(1x)

Cumulative flow, N

Local capacity, Q; Time, ¢
N(t,x,)
!
® ® o— Traffic
B i Xi+]
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Newell’s Method

At x;, one cannot accommodate more vehicles than what is sent from
upstream, the capacity, and what can be received downstream.

NU(z, \.,) s M, v/)

Cumulative flow, N

N‘[”(/,x/) ~Jy

Time, ¢
Upstream arrival ~ Local capacity Downstream queue
N(1,x,) NOt.x)) N (1x,)
- . -
@ Traffic

Xi+1

[
-

Hence, the cumulative count is the lowest of all the three conditions

N(E ) = min {N (2, %), NO(t, %), N(¢, %)}
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Newell’s Method

Newell, G. F. (1993). A simplified theory of kinematic waves in
highway traffic, part |: General theory. Transportation Research
Part B: Methodological, 27(4), 281-287.

Newell, G. F. (1993). A simplified theory of kinematic waves in
highway traffic, part Il: Queueing at freeway bottlenecks. Trans-
portation Research Part B: Methodological, 27(4), 289-303.
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https://www.jstor.org/stable/25768946

Your Moment of Zen
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ih2W(F, 1) = (_%V2 + V(7 8)) (T, 1)
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