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Previously on Traffic Engineering

Under the continuum approximation assumption, we treat N(t, x) as a
continuous function. Hence, we can define its partial derivatives.
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Previously on Traffic Engineering

Having the fundamental diagram now gives us three sets of equations,
which when solved will give the speed, density, and flow in the domain of
interest.

1 q = kv

2 ∂k
∂t + ∂q

∂x = 0

3 q = f (k)

Plugging the fundamental diagram equation in the conservation law, we
get a PDE purely in terms of the density

∂k

∂t
+

∂f (k)

∂x
= 0

∂k

∂t
+ f ′(k)

∂k

∂x
= 0

This equation is also called first-order hyperbolic conservation law.
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Previously on Traffic Engineering

Solving the PDE requires some knowledge of the density function. This is
prescribed in one or more of the following ways:
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Lecture Outline

Waves
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Waves
Introduction

Traffic on highways are known to exhibit wave-like phenomenon.

Can we find analytical solutions to the conservation equation that also
capture such patterns?
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Waves
Traveling Waves

Simple PDEs can be classified into different classes of equations (Trans-
port, Laplace, Heat, Wave equations etc.)

Many equations have solutions of the form k(t, x) = f (x − ct), which is
called a traveling wave.

90 Traffic Flow Theory
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Figure 6.3 A traveling wave.

t0. If c is a positive constant, wave k(t, x) = f (x− ct) travels to the right over
time, while wave k(t, x) = f (x+ ct) moves to the left over time.

6.4 TRAVELINGWAVE SOLUTIONS

Solve the following wave equation:

ktt = akxx,

where a is a constant.
Assume that a solution to the above wave equation takes a traveling form

k(t, x) = f (x− ct). Let z = x− ct. Then

kt = ∂k

∂t
= df

dz

∂z

∂t
= f ′ × (−c) = −cf ′.

Similarly, kx = f ′, ktt = c2f ′′, and kxx = f ′′.
Plugging the above expressions into the wave equation, one obtains

(c2 − a)f ′′ = 0.

There are two ways for the left-hand side to be 0: (1) c2 − a = 0 and
(2) f ′′ = 0.
1: If c2−a = 0, then k(t, x) = f (x±√

at), where f can take any functional
form.

2: If f ′′ = 0, then k(t, x) = A + B(x − ct), where A and B are arbitrary
constants.

For positive c , k(t, x) = f (x − ct) travels right over time and k(t, x) =
f (x + ct) travels left.
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Waves
Wave fronts

A traveling wave is called a wave front if

k(t, x) =

{
k1 x → −∞
k2 x →∞

If k1 = k2, the solution is called a pulse.
Waves 91
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Figure 6.4 Wave front and pulse.

6.5 WAVE FRONT AND PULSE

A traveling wave is called a wave front if{
k(t, x) = k1 as x → −∞,

k(t, x) = k2 as x → +∞.

Figure 6.4 illustrates a wave front. A traveling wave is called a pulse if
k1 = k2.

6.6 GENERAL SOLUTION TOWAVE EQUATIONS

Many wave equations have a general solution in the form of superposition
of traveling waves:

k(t, x) = F(x− ct)+G(x+ ct).

Note that even though each of the terms on right-hand side is a traveling
wave, their superposition may not necessarily be.

Example 1
Solve the following wave equation with initial conditions⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ktt = c2kxx,

k(x, 0) = f (x),

kt(x, 0) = g(x),

−∞ < x < +∞, t > 0.
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Waves
General Solution

Wave equations typically have solutions which are sum of traveling waves
of the following form

k(t, x) = F (x − ct) + G (x + ct)

Solve the following wave equation for x ∈ (−∞,∞), t > 0 with the given
set of initial conditions

ktt = c2kxx

k(0, x) = f (x)

kt(0, x) = g(x)
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Waves
d’Alembert Solution

From the initial conditions on k ,

k(0, x) = F (x) + G (x) = f (x)

From the initial conditions on kt ,

kt(0, x) = −cF ′(x) + cG ′(x) = g(x)

Integrating from 0 to x ,

−F (x) + G (x)− (−F (0) + G (0)) =
1

c

∫ x

0

g(y)dy

Solving for F (x) and G (x) and plugging it into the form of the general
solution,

k(t, x) = F (x − ct) + G (x + ct)

=
1

2

[
f (x − ct) + f (x + ct)

]
+

1

2c

∫ x+ct

x−ct
g(y)dy
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Waves
Domain of Dependence and Range of Influence

From the above equation, if we want the value of k at (t∗, x∗),

k(t∗, x∗) =
1

2

[
k(0, x∗ − ct∗) + k(0, x∗ + ct∗)

]
+

1

2c

∫ x∗+ct∗

x∗−ct∗
g(y)dy94 Traffic Flow Theory
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Figure 6.5 Characteristics.

6.7.3 Characteristics
Notice that in the left part of Figure 6.5, the two lines coming from point
(t∗, x∗) intersecting the x-axis at (x∗ − ct∗, 0) and (x∗ + ct∗, 0) have slopes
c and −c. These two lines are called characteristic lines or simply characteristics
(please do not mix this up with traffic flow characteristics).

6.8 SOLUTION TO THEWAVE EQUATION

In a special case where kt(0, x) = 0, the solution of the wave equation in
Example 6.6 reduces to

k(t, x) = 1
2
[k(0, x− ct)+ k(0, x+ ct)].

This shows that the value of k at (t, x) depends only on the initial values
of k at two points, x1 = x − ct and x2 = x + ct. Once the initial values
k(0, x− ct) and k(0, x+ ct) are known, one constructs the solution k at (t, x)
by taking the average of k(0, x1) and k(0, x2).

Example 3
Use characteristics to solve the following wave equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ktt = 4kxx,

k(0, x) =
{
1 if 0 ≤ x ≤ 1 or

0 otherwise,

kt(0, x) = 0,

−∞ < x < +∞, t > 0.

To find k , we need two initial values and g defined on the interval [x∗ −
ct∗, x∗+ct∗]. This interval is called the domain of dependence of (t∗, x∗).

Likewise, we can define the range of influence as the points affected by
the domain of dependence.
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Waves
Characteristics

The lines with slopes c and −c which help construct the domain of de-
pendence and range of influence are called characteristics.

Using the characteristics, find the solution to the following wave equation
for x , t ∈ (0,∞):

ktt = 4kxx

k(0, x) = 1 if x ∈ [0, 1] and 0 otherwise

kt(0, x) = 0

Lecture 8 Method of Characteristics
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Waves
Example

Waves 95
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Figure 6.6 Solution to Example 6.8.

In this equation, the traveling wave speed c = ±2—that is, k(t, x) =
f (x ± 2t). First, one constructs an x-t plane. Locate points 0 and 1 on
the x-axis. Then one draws two characteristics (their slopes are ±2) from
each of the two points (see Figure 6.6). The four characteristics partition
the x-t plane into six regions as labeled in Figure 6.6. Take an arbitrary
point (t0, x0), for example. The solution at this point is found by drawing
two characteristics from this point. Then find the intersections of the two
characteristics on the x-axis. Next, find the k values at the two intersections.
In this case the k values are 1 and 0. Then the solution k at point (t0, x0) is
the average of the k values at the two intersections—that is, k(t0, x0) = 1

2 .
With use of a similar technique, the solution in other regions can be

determined. To sum up, the solution to the above wave equation is as
follows:

k(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (t, x) ∈ region I,

1 if (t, x) ∈ region II,

0 if (t, x) ∈ region III,
1
2 if (t, x) ∈ region IV,
1
2 if (t, x) ∈ region V,

0 if (t, x) ∈ region VI.

The above discussion presents the following notion:
1. For some wave equations such as that in Example 6.8, solution k at point
(t, x) can somehow be related to the initial condition k0 at point (0, x0).

Lecture 8 Method of Characteristics
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Lecture Outline

Characteristics
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Characteristics
Introduction

In the conservation law kt +qx = 0, suppose f ′(k) = c , a constant. Then,
the PDE in terms of density can be written as

kt + ckx = 0

k(0, x) = k0(x)

Suppose the density on the road at time t = 0 is given (Cauchy problem).
As before, we are interested in finding the value of density at every (t, x).

Instead, suppose we try to estimate the density along a curve x = x(t).

dk(t, x(t))

dt
=

∂k

∂t

dt

dt
+

∂k

∂x

dx(t)

dt

= kt +
dx(t)

dt
kx

If dx(t)
dt = c , what is dk

dt ?
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Characteristics
Introduction

Hence, the total time derivative of the density is constant along a curve

x = x(t) if dx(t)
dt = c .

In other words, the value of the density is constant along a straight line
with slope c , i.e., along x(t) = ct + x(0) = ct + x0.

Hence, to compute density at a point (t∗, x∗), draw the characteristic curve
with slope c and look where it intersects the y axis. That is,

k(t∗, x∗) = k(0, x∗ − ct∗) = k0(x∗ − ct∗)

Notice that this solution is in the form of a traveling wave. Which funda-

mental diagram is suited for this framework?

Lecture 8 Method of Characteristics
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Characteristics
Example

Using the method of characteristics, find the solution to the following
conservation law at (t∗, x∗) = (3, 10)

kt + 2kx = 0

k(0, x) = 2x2 + 5

Lecture 8 Method of Characteristics
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Characteristics
Properties

For the previous PDE, all characteristics have the same slope c and are
parallel to each other. The density along these characteristics is same as
the initial value. Waves 99
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Figure 6.7 Illustration of parallel characteristics.
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Figure 6.8 Illustration of nonparallel characteristics.

Example 6
In this example, c explicitly depends on x and or t—for example, c = t.
The equation of the characteristic is derived from the following ordinary
differential equation:

dx(t)

dt
= c = t.

After integration, one obtains x = 1
2 t

2 + A, where A is an integral
constant. In this case, the characteristic is no longer a straight line, but is a
parabola. In addition, characteristics drawn from different time-space points
are no longer parallel. Instead, they may intersect.

Waves 99
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Example 6
In this example, c explicitly depends on x and or t—for example, c = t.
The equation of the characteristic is derived from the following ordinary
differential equation:

dx(t)

dt
= c = t.

After integration, one obtains x = 1
2 t

2 + A, where A is an integral
constant. In this case, the characteristic is no longer a straight line, but is a
parabola. In addition, characteristics drawn from different time-space points
are no longer parallel. Instead, they may intersect.

Instead, suppose c is a function of k , i.e., we have a different fundamental
diagram where c = c(k(t, x)).

dx(t)

dt
= c(k(t, x))⇒ x = c(k0(x0))t + x0

The characteristics in this case are straight lines but need not be parallel.
Lecture 8 Method of Characteristics



20/27

Lecture Outline

Newell’s Method
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Newell’s Method
Introduction

The earlier analysis applies to scenarios where the slope of the flow-density
relationship is constant.

156 Traffic Flow Theory

Uncongested
conditions

Congested
conditions

Density, k

Fl
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Figure 10.1 Triangular flow-density relationship.

10.1 TRIANGULAR FLOW-DENSITY RELATIONSHIP

The kinematic waves model was proposed as a (graphical) solution to
the LWR model under a special condition: the underlying flow-density
relationship is a triangular one with jam density K and capacity Q (see
Figure 10.1).

From Figure 8.5, a point on the flow-density curve uniquely defines
the operating condition of a stream of traffic. The speed of a kinematic
wave carried by the traffic, w, is the tangent to the curve at this point.
If the underlying flow-density relationship is triangular, finding kinematic
wave speeds is greatly simplified. Actually, there are only two kinematic
wave speeds: a forward wave speed wf for all uncongested conditions (the
left branch of the triangle) and a backward wave speed wb for all congested
conditions (the right branch). In addition, wf happens to be the same as
the free-flow speed vf . As a special property of the triangular flow-density
relationship, vf applies to all uncongested conditions.

10.2 FORWARDWAVE PROPAGATION

Unlike conventional numerical models such as FREFLO, KRONOS, and
the cell transmission model which keep track of cell storages n(ti, xj) or
equivalently cell densities k(ti, xj), simplified kinematic waves model just
counts vehicles at some predetermined locations. The outcome of the
model is a set of cumulative flows representing the number of vehicles
counted at these locations over time, N(t, xj), j ∈ (1, 2, . . . , J). These
cumulative flows contain all the information that is needed to determine
traffic dynamics over time and space.

Gordon Newell extended this idea to triangular fundamental diagrams
where the slopes are constant but can take two possible values depending
on the density (congested or uncongested regions)

However, we do not know the traffic regime upfront to directly use the

corresponding c value.

Lecture 8 Method of Characteristics
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Newell’s Method
Forward Wave

Simplified Theory of Kinematic Waves 157
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N(t, xj) = N(t – (xj –  xj–1) / wf, xj–1)

Traffic
xj–1 xj+1xj

wf

N(t, xj–1) N(t, xj)

T=(xj– xj–1)/wf

Figure 10.2 Forward wave propagation.

Suppose the cumulative flow recorded at location xj−1 over time t is
N(t, xj−1) and there is no congestion between xj−1 and xj+1. The trafficwill
be dictated by (uncongested) upstream arrival from xj−1, and these vehicles

will arrive at downstream location xj after a duration of T = xj−xj−1
vf

if the
vehicles preserve their order (i.e., first in, first-out). The traffic also carries
a kinematic wave whose speed wf happens to be vf , as noted above, so it
is equivalent to saying that the kinematic wave will propagate forward and
arrive at xj after T = xj−xj−1

wf
. Graphically, this forward wave propagation

can be constructed as in Figure 10.2, where the profile N(t, xj) is simply a
horizontal translation of profile N(t, xj−1) to the right by T :

N(t, xj) = N(t − T , xj−1) = N
(
t − xj − xj−1

wf
, xj−1

)
.

10.3 BACKWARDWAVE PROPAGATION

Suppose the cumulative flow recorded at location xj+1 over time t is
N(t, xj+1) and there is congestion between xj−1 and xj+1 (see Figure 10.3).
Then the kinematic wave carried by the traffic will propagate backward at
speed wb. Hence, the traffic condition at location xj (xj−1 < xj < xj+1)
will be dictated by downstream congestion. Consequently, cumulative flow
at xj, N(t, xj), will be a horizontal translation of N(t, xj+1) to the right by

T = xj+1−xj
wb

shifted upward by a jam storage n = Kj(xj+1 − xj):

N(t, xj) = N(t − T , xj+1) + n = N(t− xj+1 − xj
wb

, xj+1) + Kj(xj+1 − xj).

N(t, xj) = N(t − T , xj−1) = N

(
t − xj − xj−1

wf
, xj−1

)
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Newell’s Method
Backward Wave

158 Traffic Flow Theory
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Figure 10.3 Backward wave propagation.

10.4 LOCAL CAPACITY

Suppose the cumulative flow to pass location xj is N(t, xj) and the local
capacity isQj. Since vehicles cannot be discharged beyond the capacity, this
is equivalent to saying that the tangent to the profile N(t, xj) at any point
should not exceed Qj. Hence, the cumulative flow constrained by local
capacity Qj, NQ(t, xj) is constructed as follows. Draw a line with slope Qj
from the right toward the profileN(t, xj) till the line is tangent to the profile.
Any portion of the profile above the line is replaced by the latter. Continue
the above process until no portion of the profile has a tangent greater than
Qj (see Figure 10.4).
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Time, t

Traffic

Local capacity, Qj

NQ(t,xj)
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Figure 10.4 Flow constrained by local capacity.

N(t, xj) = N(t − T , xj+1) + kj(xj+1 − xj)

= N

(
t − xj+1 − xj

wb
, xj+1

)
+ kj(xj+1 − xj)
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Newell’s Method
Capacity Conditions

158 Traffic Flow Theory
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Figure 10.3 Backward wave propagation.

10.4 LOCAL CAPACITY

Suppose the cumulative flow to pass location xj is N(t, xj) and the local
capacity isQj. Since vehicles cannot be discharged beyond the capacity, this
is equivalent to saying that the tangent to the profile N(t, xj) at any point
should not exceed Qj. Hence, the cumulative flow constrained by local
capacity Qj, NQ(t, xj) is constructed as follows. Draw a line with slope Qj
from the right toward the profileN(t, xj) till the line is tangent to the profile.
Any portion of the profile above the line is replaced by the latter. Continue
the above process until no portion of the profile has a tangent greater than
Qj (see Figure 10.4).
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Figure 10.4 Flow constrained by local capacity.

Lecture 8 Method of Characteristics



25/27

Newell’s Method
Introduction

At xj , one cannot accommodate more vehicles than what is sent from
upstream, the capacity, and what can be received downstream.Simplified Theory of Kinematic Waves 159
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Figure 10.5 The minimum principle.

10.5 MINIMUM PRINCIPLE

Intuitively, the minimum principle means that any point on a roadway
xj cannot admit more vehicles than arrive from an upstream location
Nup(t, xj), which is allowed by local capacity NQ(t, xj), and which the
downstream location is able to receive Ndn(t, xj). Graphically, this involves
superimposing the above three curves on a single graph, and the cumulative
flow that actually passes xj, N(t, xj) is the lower envelope of the three (see
Figure 10.5):

N(t, xj) = min{Nup(t, xj),N
Q(t, xj),N

dn(t, xj)}.

10.6 SINGLE BOTTLENECK

In Figure 10.5, if there is an on-ramp at xj, the location slightly downstream
(to the right of xj), x

+
j , may be a bottleneck since both traffic streams

from the upstream mainline and the on-ramp meet here. To keep track
of arrival and departure flows, cumulative flow N(t, x) will be replaced by
two notations:
• cumulative arrival flow A(t, x), which denotes cumulative flow having

arrived at location x by time t waiting to pass x, and
• cumulative departure flow D(t, x), which denotes cumulative flow

having departed location x by time t.

Hence, the cumulative count is the lowest of all the three conditions

N(t, xj) = min
{
Nup(t, xk),NQ(t, xj),N

dn(t, xj)
}

Lecture 8 Method of Characteristics
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Newell’s Method
Additional Reading

Newell, G. F. (1993). A simplified theory of kinematic waves in
highway traffic, part I: General theory. Transportation Research
Part B: Methodological, 27(4), 281-287.

Newell, G. F. (1993). A simplified theory of kinematic waves in

highway traffic, part II: Queueing at freeway bottlenecks. Trans-

portation Research Part B: Methodological, 27(4), 289-303.

https://www.jstor.org/stable/25768946
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