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Previously on Traffic Engineering

Let us extend the earlier example to connect the
time-mean and space-mean speeds.

Imagine a scenario with multiple lanes 1, . . . ,C each
with uniform traffic with capacity qi , density ki , and
speeds vi .

Let q =
∑

i qi be the total flow and k =
∑

i ki be
the total density.

Let fi = qi/q and f ′i = ki/k be the proportion of
observing a certain colour of vehicle across time and
space.

For each lane, we can write qi = kivi since the headway is qi and spacing
is vi/qi .
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Previously on Traffic Engineering

Time-mean and space-mean speeds for this setting can be written as

vt =
C∑
i=1

fivi

vs =
C∑
i=1

f ′i vi

Notice from the definition of the space-mean speed that

vs =
C∑
i=1

ki
k
vi =

1

k

C∑
i=1

qi =
q

k

Hence, we can write q = kvs for non-homogeneous traffic but the speed v
in this expression is the space-mean speed.
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Previously on Traffic Engineering

The following is a picture from Ni (2016) with one year of traffic data from
a city in US aggregated into 5-minute intervals.

54
Traffi

c
Flow

Theory

Figure 4.3 Observed q-k-v relationships.

The density values are calculated from the volume and speed measure-
ments.
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Lecture Outline

1 Conservation Equation

2 LWR Model
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Lecture Outline

Conservation Equation
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Conservation Equation
Introduction
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The number of vehicles cross-
ing AB is q∆t. Likewise, the
number of vehicles in AD is
k∆x .

In the limiting case, these two
terms must be equal. Hence,
q∆t = k∆x ⇒ q = kv .

To be more precise with the notation, we can write

q(t, x) = k(t, x)v(t, x)
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Conservation Equation
Cumulative Counts

There is another useful relationship between volume (v) and density (k)
that can be derived using the notion of cumulative counts.
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Suppose we number cars in the order in which they appear. Define N(t, x)

as the car number of the trajectory closest to the point (t, x). These

functions are also referred to as Moskowitz functions.
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Conservation Equation
Cumulative Counts

Under the continuum approximation assumption, we treat N(t, x) as a
continuous function. Hence, we can define its partial derivatives.
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𝑑𝑡

𝑑𝑥

∂N(t, x)

∂x
= −k(t, x)

∂N(t, x)

∂t
= q(t, x)

For a continuous function, we can write

∂2N(t, x)

∂t∂x
=

∂2N(t, x)

∂x∂t
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Conservation Equation
Cumulative Counts44 Traffic Flow Theory

Cumulative number of vehicles, n
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Figure 3.5 Three-dimensional representation examples.

the two intersections is the distance traversed by vehicle 2 from t(1) to t(2).
If an N-x curve at time t is smoothed (like curve P′N′ in Figure 3.5), the
tangent of the curve denotes the density k at this instant. Note that the
tangent slants down (because lower-numbered vehicles are in front), so it
has a negative value. Hence,

k|t = −dN

dx

∣∣∣∣
t
.

Similarly, if one cuts the three-dimensional model with a plane passing
a specific location and parallel to the N-t plane, one obtains a curve
representing the cumulative number of vehicles passing this location over

Traffic Flow Characteristics II 45

Space, x 
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Figure 3.6 The N-x diagram.

time—for example, the curves in the lower part of Figure 3.5, such as the
x = 0, 2, 4, 6 curves, and the curves in Figure 3.7. If one draws a horizontal
line at height N = 2 in Figure 3.7, the intersection of this line and the
curve labeled x(2) indicates the time when the vehicle with ID 2 passes
location x(2). Similarly, the intersection of line N = 2 and curve x(3) is
the time when vehicle 2 passes location x(3). The distance between the two
intersections is the travel time for vehicle 2 to traverse from location x(2) to
location x(3). If an N-t curve at location x is smoothed, the tangent of this
curve denotes the flow q at this location:

q|x = dN
dt

|x.
Therefore, flow and density can be expressed as partial differentials of

the surface N(x, t):

q = ∂N(x, t)
∂t

,

k = −∂N(x, t)
∂x

.

In addition, if one projects a region on the surface N(x, t) (e.g., region
A in Figure 3.8) onto the x-t, N-t, and N-x planes, one obtains three
projections—AN ,Ax, andAt, respectively. Makigami et al. [7] demonstrated

46 Traffic Flow Theory
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Figure 3.7 The N-t diagram.

that the following relationships hold:

A2 = A2
N + A2

x,+A2
t ,

q = At
AN

,

k = Ax
AN

,

v = At
Ax

.

Figure 3.9 summarizes the previous graphics in one figure. Plot A shows
vehicle trajectories in the x-t plane. Plot D raises the vehicle trajectories to
their corresponding height and forms the three-dimensional surfaceN(x, t).
Plot B shows two N-t curves observed at locations x = x2 and x = x4. Plot
C depicts two N-x curves resulting from snapshots taken at t = t6 and
t = t8.

In addition to deepening the understanding of traffic flow and its
characteristics, the three-dimensional model can be used to solve practical
problems. For example, as mentioned before, space-based measures such as
density and space mean speed are desired. In addition, determination of
these traffic flow characteristics based on generalized definition (as opposed
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Conservation Equation
Conservation Equation

Plugging in the expressions for the partial derivatives, we get the following
PDE that must be satisfied by the flow and density functions

∂k

∂t
+

∂q

∂x
= 0

A shorthand way of writing this is kt + qx = 0

This PDE is also called the “Conservation Law” since it can be derived in

a different way by assuming that vehicles do not appear or disappear inside

a small infinitesimal region.
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Conservation Equation
Alternate Derivation I

Suppose that from t1 to t2, a total of ∆N1 and ∆N2 vehicles cross locations
x1 and x2. Suppose ∆t = t2 − t1.

76 Traffic Flow Theory

• Given existing traffic conditions on a road and upstream arrivals in the
near future, how do road traffic conditions change over time?

• Where are the bottlenecks, if any?
• In the case of congestion, how long does it last and how far do queues

spill back?
• If an incident occurs, what is the best strategy for cleanup so that the

impact on traffic is minimized?
Answers to these questions involve the analysis of dynamic change of

traffic states over time and space. Unfortunately, the above relationships or
models are capable only of describing traffic states. They do not provide a
mechanism to analyze how such states evolve. Starting from this chapter,
dynamic models will be introduced to address these questions.

The derivation of a dynamic equation starts with the examination of
a small volume of roadway traffic as a continuum. Here traffic flow is
treated as a one-dimensional compressible fluid like a gas. Conservation
laws apply to this kind of fluid, and the first-order form of conservation is
mass conservation, also known as the continuity equation.

5.1 THE CONTINUITY EQUATION

There are several ways to derive the continuity equation, each takes a
different perspective on the small volume of roadway traffic (see Figure 5.1).

Derivation I: Finite Difference
The following derivation is found in Ref. [3]. Suppose a highway section is
delineated by two observation stations at x1 and x2. Let�x = x2−x1 denote
the section length. During time interval �t = t2− t1, N1 vehicles passed x1
and N2 vehicles passed x2. Therefore, the flow rates at these locations are

Traffic flow

q1 q2

x1 x2Δx

Figure 5.1 Deriving the continuity equation I.

q1 =
∆N1

∆t
q2 =

∆N2

∆t

Assuming that the traffic densities at t1 and t2 are k1 and k2, what is

the change in the number of vehicles in terms of the flow and density

variables?
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Conservation Equation
Alternate Derivation I

The change in the number of vehicles in the section in terms of the flow
variables are

∆N = ∆N2 −∆N1 = q2∆t − q1∆t = ∆q∆t

In terms of the density,

∆N = k1∆x − k2∆x = −∆k∆x

From the above equations,

∆q∆t + ∆k∆x = 0

∆q

∆x
+

∆k

∆t
= 0

Letting ∆x → 0 and ∆t → 0,

∂q

∂x
+

∂k

∂t
= 0
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Conservation Equation
Alternate Derivation II

According to Green’s theorem, if L and M are functions of (t, x) and have
continuous partial derivatives

∮
C

(Ldt + Mdx) =

∫ ∫
A

(
∂M

∂t
− ∂L

∂x

)
dtdx

80 Traffic Flow Theory

Traffic flow

v, k

x

v + dv,
k + dk

Figure 5.4 Reducing three dimensions to one dimension.

Highway traffic constitutes a special case of the above situation with only
one dimension (see Figure 5.4). Using the result derived above, one obtains

∂(kv)
∂x

+ ∂k
∂t

= 0.

Note that q = kv. Therefore,

qx + kt = 0.

Derivation IV: Scalar Conservation Law
This derivation is adopted from [22]. Consider a cell in the time-space
domain bounded by (t1, t2)×(x1, x2) (see Figure 5.5). Let traffic flow, speed,
and density be functions of time and space—that is, q = q(t, x), v = v(t, x),
and k = k(t, x). Obviously, the conservation of vehicles in the cell requires
the following:

∫ x2

x1
k(t2, x)dx−

∫ x2

x1
k(t1, x)dx =

∫ t2

t1
q(t, x1)dt −

∫ t2

t1
q(t, x2)dt,

Sp
ac

e 
x

X
2

X
1

0 Time tt1 t2

Figure 5.5 Deriving the continuity equation IV.Setting L = q and M = −k ,∮
C

(qdt − kdx) = −
∫ ∫

A

(
∂k

∂t
+

∂q

∂x

)
dtdx

Since the gradient of N(t, x) is (q,−k),∮
C

(qdt − kdx) = N(t2, x2)− N(t1, x1)

which is 0 when C is closed. Since, this is true for every closed C and A,

∂tk + ∂xq = 0.
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Conservation Equation
Summary

So far, we have two equations that connect traffic flow variables:

1 q = kv

2 ∂k
∂t + ∂q

∂x = 0

To fully describe these three variables over the domain of interest, it is

necessary to have a third equation.
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Lecture Outline

LWR Model
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LWR Model
Introduction

The Lighthill Whitham Richards (LWR) model developed in the 50s com-
bines the conservation equation with fundamental diagrams q = f (k).
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LWR Model
First-Order PDE

Having the fundamental diagram now gives us three sets of equations,
which when solved will give the speed, density, and flow in the domain of
interest.

1 q = kv

2 ∂k
∂t + ∂q

∂x = 0

3 q = f (k)

Plugging the fundamental diagram equation in the conservation law, we
get a PDE purely in terms of the density

∂k

∂t
+

∂f (k)

∂x
= 0

∂k

∂t
+ f ′(k)

∂k

∂x
= 0

This equation is also called first-order hyperbolic conservation law.
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LWR Model
Fundamental Diagram

Most commonly used fundamental diagrams are triangular, and trape-
zoidal. The parameters of these shapes have to be calibrated from data.
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𝑤
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LWR Model
Applications

Why do we need a macroscopic model when microscopic models exist?

I Microscopic models are ideal for fine-grained traffic analysis for
small networks or corridors. They scale badly for larger networks.

I Macroscopic models are faster to run and hence can be embedded
within other frameworks such as dynamic traffic assignment more
easily.

Some of the questions that can be addressed with macroscopic models
include

I For known initial conditions and inflows, how does traffic evolve
over time?

I Where do bottlenecks occur?

I How does congestion spill back, shocks propagate, and how far do
queues go?
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LWR Model
First-Order PDE

Solving the PDE requires some knowledge of the density function. This is
prescribed in one or more of the following ways:
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Downstream Boundary Condition

Upstream Boundary Condition

Internal Condition
1 Initial Condition

2 Boundary Condition

3 Internal Condition
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LWR Model
First-Order PDE

In many cases, given some initial conditions, one can solve the PDE exactly
to get the value of density at all points in the domain.

Fixed bottleneck 

Moving bottleneck 

In this course, we will restrict our attention to first-order macroscopic

models. They have some limitations such as infinite accelerations, which

are handled using second-order macro models.

Lecture 7 Macroscopic Traffic Models



23/26

LWR Model
Lagrangian Coordinates

The LWR models described so far is set in Eulerian coordinates. Using a
change of variables, it is possible to describe traffic in Lagrangian coordi-
nates. This is sometimes easier to solve.

The variables of interest in Lagrangian coordinates are spacing s and ve-
locity v instead of density k and flow q.

The independent variables are (t,N). That is, we track the individual

vehicles over time instead of (t, x).
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LWR Model
Lagrangian Coordinates

Time

Sp
ac
e

1 2
3

4
5
6
7

8
9

10

11

𝑑𝑡

𝑑𝑥

From the space-time trajectories, we
can write

v(t,N) =
∂x(t,N)

∂t

s(t,N) = −∂x(t,N)

∂N

Assuming x(t,N) is continuous,

∂2x(t,N)

∂t∂N
=

∂2x(t,N)

∂N∂t

which implies
∂s(t,N)

∂t
+

∂v(t,N)

∂N
= 0
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LWR Model
Lagrangian Coordinates

We still need the fundamental diagram to write this as an equation in one
variable.

To this end, the spacing-speed relationship is used, i.e., v = f (s).

∂s

∂t
+ f ′(s)

∂s

∂N
= 0
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Your Moment of Zen
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