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Previously on Traffic Engineering

The GM models track the accelerations (response) of the follower vehicle
as a function of sensitivity and stimuli such as reaction time, velocity
differential, and spacing.

(x',-(t+ T,-))m

(x;_l(t) _ x;(t))l

where oy, is referred to as the sensitivity coefficient and / and m are the
speed and spacing exponents.

)'éf(t + 7',‘) = QI m

(i-1(6) = (1))
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Previously on Traffic Engineering

The intelligent driver model (IDM) by Treiber, Hennecke, and Helbing
(2000) predicts the acceleration of a following vehicle using the velocity of
the current vehicle and the desired spacing s* that depends on the speed

differential.
e=afi () - (29)]

V,'(t) — V,'_1(i')>
2v/b;a;

st (t) = sp + max (0, vi(t) Ti + vi(t)

Where

v/"® is the desired speed

T is the time gap

So is the minimum gap

0 is the acceleration exponent

b; is a comfortable value of deceleration.
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Calibration

Driving behaviours vary across geographies, traffic facilities, and time of
day. Hence, it is necessary to adjust the parameters of the car following
and lane changing models to better reflect local conditions.

This process is typically done by collecting data and calibrating and vali-
dating the models.

There is no universal approach to calibrating a model. In this lecture, we
will explore a few methods that have been used in the literature
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Calibration

It is common to find inter-driver and intra-driver variations in driving be-
haviour.

With enough data, it is possible to find model parameters for each indi-
vidual. Alternately, one can

Estimate a set of global parameters from data pooled from multiple
drivers.

Assume that heterogeneity of parameters is captured using
distributions and estimate their parameters.
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Calibration

Calibration of microscopic traffic flow models can be carried out using
either microscopic or macroscopic data.

Microscopic data typically consists of spacing, velocity, and acceleration
from a single vehicle or floating car data preferably from a leader-follower
pair.
Popular methods for calibrating the models from microscopic data are:
Least squares method
Maximum likelihood

Metaheuristics
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Calibration

Suppose 3 denotes the vector of parameters of the car following model.
Let y; denote a traffic variable of the follower at time t.

The following variants of the least squares objective are typically used.

2 (e (B) — yior)?
( data)

1 2 _ éiata
s =73 (M50

> (ve(B) — y2)? |yfer|
Zt |yt ata|

S(8) =

2

Sy(8) =

Suppose y denotes the spacing, then the S;’bs objective does well in fitting
small gaps in slow moving traffic and Sy’e’ performs better when gaps are
larger (cruising).
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Calibration

If multiple types of measurements are available, a hybrid objective of the
following form can also be used to calibrate parameters

Shybr(ﬂ) — ,ylssmix + 725‘71& 4 73521‘1/)(

Optimizing least square-type objectives are straightforward. In many cases,
analytical expressions for the gradient of the objective with respect to the
parameters are easy to obtain.

A simple gradient descent or Newton's method can help find the optimal
parameters. Is the objective convex/concave?
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Calibration

Recall that if X ~ A (p, X) is an n-dimensional random variable its joint
PDF is given by

—¥ex fle Ty =Y(x -
fx(x) = 2T p( 5 (x =) Z7( u))

In MLE estimation-based method, define a vector of multivariate Gaussian
deviations as

e:(B) = yi" — yi™(B)

The log-likelihood function for a single trajectory can thus be written as
L(ﬁ,z):—qn 1Z|) - Zet B)X 'e:(B)
The covariance matrix is approximated using the Gs as

=23 el (3)

The log-likelihood function purely in terms of 3s is L(3, f) 12/23



Example
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Metaheuristics

Metaheuristics such as genetic algorithms and Tabu search are also fre-

quently used to calibrate parameters in commercial and non-commercial
simulators.

Tnitialization
Generate a random set of parameters
Set generation=0

Simulator

(RUN VISSIM)

Compute the Objective
Function Value

Observed Data

Update the Best Solution
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Metaheuristics

VISSIM Description Feasible range Unit

code (Min.~Max.)

cco Standstill distance: Desired distance between lead and following vehicle at v=0 mph 2~10 ft

cc Headway Time: Desired time in seconds between lead and following vehicle 0.5~1.5 sec

cc2 Following Variation: Additional distance over safety distance that a vehicle requires 5~20 ft

cc3 Threshold for Entering ‘Following’ State: Time in seconds before a vehicle starts to decelerate to reach ~ —15~-4 sec
safety distance (negative)

cc4 Negative ‘Following’ Threshold: Specifies variation in speed between lead and following vehicle —2~-0.1 ft/s

CCs Positive ‘Following Threshold’: Specifies variation in speed between lead and following vehicle 0.1~2 ft/s

cc7 Oscillation Acceleration: Acceleration during the oscillation process 0.5~1.5 ft/s?
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Other Approaches

Authors— Journal Algorithm'  Metric  Fitness function Performance  No. of calibration  Case study. Software
parameters
Ciuffo etal.  Transportation  0QMS Traffic RMSPE, RMISE, 2 (driver's E45 Naples- AIMSUN
(2008)  Research Counts, o < ottt (B bt (B25) GEH reaction timeand  Pompei-Salermo 518
Record Speeds speed freeway
s s wes wreeserd acceptance)
Maetal. Capacity, S GHE{can) + A% GHEocc) GEH 10 (MTH, MRT,  SR-99, Sacramento, ~PARAMICS
2007) Critical and AGGR etc)’  California
Re Occupancy _,
Cheuetal. Journal of GA Average | SO0 Fitness Value 12 (free-flow Ayer Rajar FRESIM
(1998)  Transportation speed, and Average s Expressway, in
Engineering Average Absolute Errors  Minimum car-  Singapore,
volume following
distances, lag to
Paz et al. SPSA Speed S (Vi — Viimuted-i) GEH A network with 38 CORSIM
(2012)  Conference ; vehicle  links, and a
performance etc.) ~ network with 20
lin
Balakrishna  Transport SPSA O-Dflows  Minimize the difference between observed and fitted RMSPE, GEH,  2(Car-following  Freeway network,  MITSimLab,
tal Research measurements RMSN and lane- Lower Westchester
(2007)  Record chan, County, New York
Toledo et al.  Transportation  Systemic 0-D flows,  Minimize the difference between observed and simulated 0-D  Speeds on Three major MITSimLab
(2004)  Research search travel flows and travel times ay freeways:
Re approach times sections and ce 405, and Route
arterial parameters) 133
sections
Jhactal  Transportation Trial and error  O-D flows a traffic  Traffic counts, 2 (Route choice  Des Moines area  MITSimLab
(2004)  Research approach and traffic d b travel times  parametersand  network
counts g aa driving behavior)
Kim et al. A Travel % foses’, 6 (look ahead  Arterial section of  VISSIM
(2005) Time Wilcoxon, K distance, average  Bellaire Boulevard,
Test, and MAER  standistill Houston, Texas
distance, and
lane change
. distance etc)
Ma and Transportation  GA Flow Qe Qe GRE 2(mean headway  Port area network, PARAMICS
Abdulhai  Research e and mean Toronto, Canada
(2002)  Record reaction tim
Park and Qi Transportation ~ GA Average Mgy Tl /ANOVA test, 6 (look ahead Alintersectionat  VISSIM
(2005)  Research Travel Scatter plots  distance, average  the junction of
Record Time standstill Route 15 and Route
distance, and gap 250, Virginia
etc.)
leeand  Transportation Enhanced  Flow, K-S test 2(mean headway  1-880 in Hayward,  PARAMICS
Orbay  Research PsA Speed and mean California
(2009) reaction time)
Hourdakis Non-linear  Speed RMSE, Theil's 12 (max.acc.  TH-160 from the  AIMSUN
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Other Approaches

Authors Journal Algorithm'  Metric Fitness function Performance  No. of calibration Case study Software
measurements’ _parameters
etal. Research Programming. Inequality rate, max. speed  interchange with I-
(2003)  Record Techniques Coefficient diff, and avg. 494 and ending
d etc.) with 1-94
Chiappone  Expert system  GA Speed, = [5 (Dy — i) + 4 (S — Sul(h)? Speed-Density 3 (reaction time, ~ A22, freeway, Italy ~ AIMSUN
with Density graph ‘min. distance
(2016)  application between vehicle,
and max. desired
spee
Menneni  Transportation  GA Maximum  Sum of all the speed-flow area in the field data that is not Flow-Speed 5(CC1,CC2,CC3,  US-101, San Mateo,  VISSIM
etal. Research 5-min covered by simulated data graph CC4,and CC5)  California
(2008)  Record flows e
Abdalhag  Journal of GATS,PS,and  Travel P o Average Fitness 4 (deceleration, A signalized suMo
and Algorithm and ~ SPSA Time acceleration, and ~ segment in a vital
Baker  Optimization driver city center
(2014) 5 5 i ion etc.)
Paz et al. Transportation ~ Memetic Vehicle (w * \/ poay ("L}Vf”#) +(1-W)s \/ pay (L'%) ) GEH 11 for freeway A portion of the CORSIM
(2015)  ResearchPart C  Algorithm,  Counts and 15 for Pyramid Highway
and SPSA and sutface streets  in Reno, NV and a
Speeds (pedestrian hypothetical
delays, and max.  network provided
deceleration etc.) by McTrans
Hale etal.  Transportation  SPSA and Speed and  Minimize the Difference between Simulated and Field- Objective 5 (entry 195 near FRESIM
(2015)  ResearchPart C “Directed Density  measured outputs Function Value  headway, and  Jacksonville, FL
Brute Force” off-ramp reaction
(DBF) distance etc.)
' 0QMS, OptQuest/Multistart Algorithm; GA, Genetic Algorithm; IA, Trial-and Method; SPSA, Si ochastic Ps, Particle Swarm Optimization; TS, TS.
2 RMSPE, root mean square percent error; RMSE, root-mean-square error; GEH, Geoffrey E. Havers statistics; MAER, mean zhsoln(e error ratio; GRE, global relative error; RMSN, Normalized root-mean-square

error.
3 MTH, mean target headway; MRT, mean reaction time; AGGR, driver aggressiveness.
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Calibration

Alternately, one can use point-sensor data at multiple locations to calibrate
car following models. The data from the most upstream sensor can be used
as initial conditions along with a approx. trajectory constructed from the
lead vehicle data at all other locations.

The follower vehicles can then be simulated using car following models and
the velocities at the sensor locations can be used to match the measured
values using least squares type objectives as shown below

K
() = o >3 () - i)’
data 2
SJeI tK Z Z (Vtk data )

or a convex combination of such objectives for other measurements such
as flow.
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Calibration
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Simulators
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Introduction

Several commercial and non-commercial tools are available for microscopic
simulation of traffic.

» SUMO

» VISSIM

» AIMSUN

» CORSIM

» PARAMICS
» TRANSYT
» TransModeler

» CityFlow
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Simulators

Install SUMO from and perform the
following tasks

Create a small network of links in netedit

Adjust the number of lanes, speeds, and update the connectors
Generate flows from one edge to another

Add a detector to measure point-sensor data

Save the network, routes, and additional elements, and the
configuration files

Run your model using sumo-gui and notice the sensor outputs
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https://www.eclipse.org/sumo/

Your Moment of Zen

HEY!!
| SAID IT'S TIME FOR A

---AND NOT FOR
A CELEBRATION!

ALL YOUR | q
RESULTS ARE
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