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Previously on Traffic Engineering

The GM models track the accelerations (response) of the follower vehicle
as a function of sensitivity and stimuli such as reaction time, velocity
differential, and spacing.

ẍi (t + τi ) = αl,m

(
ẋi (t + τi )

)m
(
xi−1(t)− xi (t)

)l (ẋi−1(t)− ẋi (t)
)

where αl,m is referred to as the sensitivity coefficient and l and m are the
speed and spacing exponents.
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Previously on Traffic Engineering

The intelligent driver model (IDM) by Treiber, Hennecke, and Helbing
(2000) predicts the acceleration of a following vehicle using the velocity of
the current vehicle and the desired spacing s∗ that depends on the speed
differential.

ẍi (t + τi ) = āi

[
1−

(
vi

vmax
i

)δ
−
(
s∗i (t)

si (t)

)2
]

s∗i (t) = s0 + max

(
0, vi (t)Ti + vi (t)

vi (t)− vi−1(t)

2
√
bi āi

)
Where
vmax
i is the desired speed
T is the time gap
s0 is the minimum gap
δ is the acceleration exponent
bi is a comfortable value of deceleration.
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Calibration
Introduction

Driving behaviours vary across geographies, traffic facilities, and time of
day. Hence, it is necessary to adjust the parameters of the car following
and lane changing models to better reflect local conditions.

This process is typically done by collecting data and calibrating and vali-
dating the models.

There is no universal approach to calibrating a model. In this lecture, we
will explore a few methods that have been used in the literature
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Calibration
Introduction

It is common to find inter-driver and intra-driver variations in driving be-
haviour.

With enough data, it is possible to find model parameters for each indi-
vidual. Alternately, one can

I Estimate a set of global parameters from data pooled from multiple
drivers.

I Assume that heterogeneity of parameters is captured using
distributions and estimate their parameters.
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Calibration
Least Squares Method

Calibration of microscopic traffic flow models can be carried out using
either microscopic or macroscopic data.

Microscopic data typically consists of spacing, velocity, and acceleration
from a single vehicle or floating car data preferably from a leader-follower
pair.

Popular methods for calibrating the models from microscopic data are:

I Least squares method

I Maximum likelihood

I Metaheuristics
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Calibration
Least Squares Method

Suppose β denotes the vector of parameters of the car following model.
Let yt denote a traffic variable of the follower at time t.

The following variants of the least squares objective are typically used.

Sabs
y (β) =

∑
t(yt(β)− ydata

t )2∑
t(y

data
t )2

S rel
y (β) =

1

T

∑
t

(
yt(β)− ydata

t

ydata
t

)2

Smix
y (β) =

∑
t(yt(β)− ydata

i )2/|ydata
t |∑

t |ydata
t |

Suppose y denotes the spacing, then the Sabs
y objective does well in fitting

small gaps in slow moving traffic and S rel
y performs better when gaps are

larger (cruising).
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Calibration
Least Squares Method

If multiple types of measurements are available, a hybrid objective of the
following form can also be used to calibrate parameters

Shybr (β) = γ1S
mix
s + γ2S

mix
v + γ3S

mix
∆v

Optimizing least square-type objectives are straightforward. In many cases,
analytical expressions for the gradient of the objective with respect to the
parameters are easy to obtain.

A simple gradient descent or Newton’s method can help find the optimal
parameters. Is the objective convex/concave?

Lecture 6 Calibration and Simulators
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Calibration
Example

320 16 Calibration and Validation
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Fig. 16.3 Calibrating the IDM globally to extended floating-car data (see Sect. 2) of a passage on
a city street (cf. Fig. 16.3) using the LSE method with the mixed objective function (16.26) for gap
differences. Shown is the “fitting landscape” in form of two-dimensional sections of the objective
function Smix

s (β) in five-dimensional parameter space around the estimate β̂ (see the main text).
The right upper graphics compares the observed versus the simulated gaps

Shybr(β) = γ1Smix
s (β) + γ2Smix

v (β) + (1 − γ1 − γ2)Smix
Δv (β) (16.27)

with the weights γ1 ≥ 0 and γ2 ≥ 0 satisfying γ1 + γ2 ≤ 1. Notice that we have
formulated all objective functions (including the absolute ones) in a dimensionless
form allowing a consistent formulation of multi-criteria objective functions such as
(16.27).

Calibrating the IDM to extended floating-car data of city traffic. In this example,
we calibrate the IDM to xFCD of a car driving through an inner-city street (see
Fig. 16.3). Since we want to calibrate the model to both stationary and cruising
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Calibration
MLE Estimation

Recall that if X ∼ N (µ,Σ) is an n-dimensional random variable its joint
PDF is given by

fX(x) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
In MLE estimation-based method, define a vector of multivariate Gaussian
deviations as

et(β) = ydata
t − ysim

t (β)

The log-likelihood function for a single trajectory can thus be written as

L(β,Σ) = −n

2
ln(|Σ|)− 1

2

∑
t

eT
t (β)Σ−1et(β)

The covariance matrix is approximated using the βs as

Σ̂(β) =
1

n

∑
t

et(β)eT
t (β)

The log-likelihood function purely in terms of βs is L(β, Σ̂)
Lecture 6 Calibration and Simulators
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Calibration
Example

324 16 Calibration and Validation
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Fig. 16.4 Calibrating the IDM locally to extended floating-car data (see Sect. 16.2.2) of a passage
on a city street using the maximum-likelihood method. Shown are two-dimensional sections of
the log-likelihood function L̃(β) in five-dimensional parameter space around the estimate β̂ (see
the main text). The right upper graphics compares the acceleration obtained from the extended
floating-car data with the IDM acceleration for the same exogenous variable values as in the data

it is easy to calculate analytical derivatives, so that minimizing methods such as the
Levenberg-Marquardt algorithm can be applied directly.

Calibrating the IDM to extended floating-car data of city traffic. In this exam-
ple, we use the same data as in Sect. 16.2.2 but calibrate the IDM by minimizing
Sabs

a (β) instead of Smix
s (β). Again, we estimate the full five-dimensional IDM para-

meter vector. As in the global estimate, the minimization reveals a unique global
minimum (Fig. 16.4). However, the parameter estimates v̂0 = 17 m/s, T̂ = 0.97 s,
â = 0.6 m/s2, b̂ = 1.4 m/s2, ŝ0 = 1.5 m show significantly differences with respect
to the global ML calibration. Particularly, the acceleration parameters a and b have
swapped their magnitude with a now being lower than expected. This is caused by
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Calibration
Metaheuristics

Metaheuristics such as genetic algorithms and Tabu search are also fre-
quently used to calibrate parameters in commercial and non-commercial
simulators.

MinimizeMANEðq;vÞ ¼ 1
N

XN
j¼1

jqobs;j � qsim;jj
qobs;j

þ jvobs;j � vsim;jj
vobs;j

 !
ð1Þ

where
qobs;j; vobs;j = actual flow and speed for a given time period j:
qsim;j;vsim;j = simulated flow and speed for a given time period j:
N = total number of observations.

Another purpose of this study is to evaluate whether the warm start method will obtain superior calibration performance
compared to that using a single algorithm alone (e.g. GA or TS alone). Since the results based on only one objective function
may be less convincing, three other objective functions which also used the flow and speed as performancemeasures are also
used and tested (Ma and Abdulhai, 2002) and they are presented below. The same GA, TS, and warm start method config-
urations are applied to each objective function and tested in such a way that the calibration results are all comparable.

Global Relative Error (GRE)

GREðq;vÞ ¼
PN

j¼1jqobs;j � qsim;jjPN
j¼1qobs;j

þ
PN

j¼1jvobs;j � v sim;jjPN
j¼1vobs;j

ð2Þ

Point Mean Absolute Error (PMAE)

PMAEðq;vÞ ¼ 1
N

XN
j¼1

jqobs;j � qsim;jj þ jvobs;j � v sim;jj
� � ð3Þ

Point Mean Relative Error (PMRE)

PMREðq;vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

qobs;j � qsim;j

qobs;j

 !2

� 1002

vuut þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

vobs;j � v sim;j

vobs;j

� �2

� 1002

vuut ð4Þ

To solve the optimization problem based on the objective function as presented above, different solution methods are
developed in this paper. The GA and TS algorithm method are briefly described, followed by the discussion of the VISSIM
calibration parameters.

Initialization
• Generate a random set of parameters
• Set generation=0

Simulator
(RUN VISSIM)

Compute the Objective 
Function Value

Keep the Best Solution

Generation<Max_Gen?

Update the Best Solution

NO

Selection

YES

Crossover

Mutation

Observed Data

Generation++

Fig. 1. GA calibration process.

68 M. Yu, W. (David) Fan / International Journal of Transportation Science and Technology 6 (2017) 63–77

Lecture 6 Calibration and Simulators



15/23

Calibration
Metaheuristics

191 � 191 � 101), which is huge. GA and TS are employed as the solution methods for finding an optimal parameter (local
optimal) set from the huge search space.

Real world case study

Data was obtained from a portion of the I-5 freeway in the city of Los Angles, California, as shown in Fig. 3(a). The study
period spans 1 h of the a.m. peak, from 7:30 to 8:30 a.m. on October 19, 2016, and the field traffic data (i.e. flow and speed) is
aggregated into 5-min counts. This freeway stretch is a four-lane with 5 on-ramps and 6 off-ramps. The length of the selected
freeway segment is about 5 miles. There are 10 detectors on the selected freeway, and the positions and the number of the
detectors are shown in Fig. 3(a). The freeway segment is created in the VISSIM model based on the data from the PeMS, the
position of off-ramps and on-ramps is presented in Fig. 3(b). The selected I-5 freeway is a mixed-flow stretch. The number of
cars and trucks are recorded in the PeMS database, and the mix of trucks and cars varies by time of day. It has been verified
that the car drivers’ behavior can be affected by heavy vehicles, such as trucks (Brackstone and McDonald, 1999). Therefore,
the presence of trucks is represented by a percentage of the total number of vehicles every 5 min which is entered into the
VISSIM. Fig. 3(c) presents the truck percentage of demand input during the study period.

Calibration results

GA and TS parameters

The GA and TS methods are integrated with the VISSIM model to calibrate the selected parameters. For GA-based calibra-
tion, a population of chromosomes is generated in the population. Each chromosome represents a feasible solution and will
be passed onto the VISSIM for simulation by MATLAB. Based on the simulated flow and speed data, the objective function
value is calculated by using Eq. (1). If the objective function value does not meet the stopping criterion, the GA will generate
a new population after the implementation of selection, crossover, and mutation. Until meeting the stopping criterion or
reaching the maximum number of generations, this process will not be stopped. As three main components of the GA, a
proper design of mutation, crossover, and selection strategies is required so that good optima can be found. Population size
and the number of generations are also need to be well tuned. Population size means how many chromosomes are included
in one generation. Too many chromosomes will slow down the GA computation. On the other hand, too few chromosomes
will only explore a small part of search space and have few possibilities to perform crossover. Likewise, too many generations
may also consume too much time. Generally, these parameters including the number of generations, population size, muta-
tion and crossover rates, are selected depending on the specific case study undertaken. The model parameters for GA in the
existing studies used for calibrating microscopic traffic simulation models are carefully reviewed (Ma et al., 2007; Kim et al.,
2005; Ma and Abdulhai, 2002; Park and Qi, 2005; Chiappone et al., 2016; Menneni et al., 2008; Abdalhaq and Baker, 2014;
Paz et al., 2015). Finally, in this case, there are 30 generations and the population size is set to be 10. Meanwhile, the cross-
over rate is set as 0.8 and mutation rate is 0.2.

TS starts with a random set of solutions. In every iteration, the neighborhood of a solution will be searched by the Tabu
technique, i.e. move and anti-move. The best solution will be chosen as the next candidate point. It should be noted that, for
the tabu Search algorithm, the improving moves are certainly accepted and recorded at each iteration, while worsening
moves can still be accepted even though there may be no temporary improvements at all in the hope that better solutions
may be found based on these intermediate worsening moves. The neighborhood of each solution will be explored more
extensively with smaller move-distance and anti-move distance. Furthermore, the anti-move distance and move distance
shall be different. Otherwise, the solution will return to the same point when conducting the move and the anti-move to
explore new solutions (Abdalhaq and Baker, 2014). The performance of the proposed TS algorithm model may depend on
the move distance, anti-move distance and the number of iterations. Unlike the GA algorithm in which the model parameters
are adopted and used based on existing studies, the move distance, anti-move distance and the number of iterations of TS in
this case have to be well tuned. In that regard, a sensitivity analysis of these parameters is conducted, and the results are

Table 2
Car-following parameters in VISSIM.

VISSIM
code

Description Feasible range
(Min.�Max.)

Unit

CC0 Standstill distance: Desired distance between lead and following vehicle at v = 0 mph 2�10 ft
CC1 Headway Time: Desired time in seconds between lead and following vehicle 0.5�1.5 sec
CC2 Following Variation: Additional distance over safety distance that a vehicle requires 5�20 ft
CC3 Threshold for Entering ‘Following’ State: Time in seconds before a vehicle starts to decelerate to reach

safety distance (negative)
�15��4 sec

CC4 Negative ‘Following’ Threshold: Specifies variation in speed between lead and following vehicle �2��0.1 ft/s
CC5 Positive ‘Following Threshold’: Specifies variation in speed between lead and following vehicle 0.1�2 ft/s
CC7 Oscillation Acceleration: Acceleration during the oscillation process 0.5�1.5 ft/s2

M. Yu, W. (David) Fan / International Journal of Transportation Science and Technology 6 (2017) 63–77 71
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Calibration
Other Approaches

Table 1
Summary of literature on the calibration of microscopic traffic simulation models.

Authors Journal Algorithm1 Metric Fitness function Performance
measurements2

No. of calibration
parameters

Case study Software

Ciuffo et al.
(2008)

Transportation
Research
Record

OQMS Traffic
Counts,
Speeds

RMSPEðq;vÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ð42�2�2Þ

P42
t¼1
P2

k¼1
P2

d¼1
qobs
tkd

�qsim
tkd

q

obs

tkd

� �2

þ 1
ð42�2�2Þ

P42
t¼1
P2

k¼1
P2

d¼1
vobs
tkd

�vsim
tkd

vobs
tkd

� �2
s

RMSEðvÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T�2�2

PT
t¼1
P2

k¼1
P2

d¼1 vobs
tkd �vsim

tkd

� �2q

RMSPE, RMSE,
GEH

2 (driver’s
reaction time and
speed
acceptance)

E45 Naples–
Pompei–Salerno
freeway

AIMSUN
5.1.8

Ma et al.
(2007)

Transportation
Research
Record

SPSA, GA, and
IA

Capacity,
Critical
Occupancy

PM
i¼1 GHEðcapiÞ þ A� GHEðocciÞ½ � GEH 10 (MTH, MRT,

and AGGR etc.)3
SR-99, Sacramento,
California

PARAMICS

Cheu et al.
(1998)

Journal of
Transportation
Engineering

GA Average
speed,
Average
volume

PT

t¼1
xfieldðtÞ�xFRESIM ðtÞj j

T Fitness Value
and Average
Absolute Errors

12 (free-flow
speeds,
Minimum car-
following
distances, lag to
acc. etc.)

Ayer Rajar
Expressway, in
Singapore,

FRESIM

Paz et al.
(2012)

IEEE
Conference

SPSA Speed
PT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1 Vi � Vsimulated�ið Þ2

q
GEH 5 (driver

behavior, vehicle
performance etc.)

A network with 38
links, and a
network with 20
links

CORSIM

Balakrishna
et al.
(2007)

Transportation
Research
Record

SPSA O-D flows Minimize the difference between observed and fitted
measurements

RMSPE, GEH,
RMSN2

2(Car-following
and lane-
changing
coefficients)

Freeway network,
Lower Westchester
County, New York

MITSimLab

Toledo et al.
(2004)

Transportation
Research
Record

Systemic
search
approach

O-D flows,
travel
times

Minimize the difference between observed and simulated O-D
flows and travel times

Speeds on
freeway
sections and
arterial
sections

2 (Driving
behavior, and
Route choice
parameters)

Three major
freeways: I-5, I-
405, and Route
133.

MITSimLab

Jha et al.
(2004)

Transportation
Research
Record

Trial and error
approach

O-D flows
and traffic
counts

Minimize the deviations between estimated and observed traffic
counts and between the estimated O-D flows and field O-D flows

Traffic counts,
travel times

2 (Route choice
parameters and
driving behavior)

Des Moines area
network

MITSimLab

Kim et al.
(2005)

Transportation
Research
Record

GA Travel
Time

Pn

i¼1

Si�Oi
Oi

��� ���
n Moses’,

Wilcoxon, KS
Test, and MAER

6 (look ahead
distance, average
standstill
distance, and
lane change
distance etc.)

Arterial section of
Bellaire Boulevard,
Houston, Texas

VISSIM

Ma and
Abdulhai
(2002)

Transportation
Research
Record

GA Flow
Pn

i¼1
jQreal�Qsim jPn

i¼1
Qreal

GRE 2 (mean headway
and mean
reaction time)

Port area network,
Toronto, Canada

PARAMICS

Park and Qi
(2005)

Transportation
Research
Record

GA Average
Travel
Time

jTTfield�TTsim j
TTfield

ANOVA test,
Scatter plots

6 (look ahead
distance, average
standstill
distance, and gap
time etc.)

A intersection at
the junction of
Route 15 and Route
250, Virginia

VISSIM

Lee and
Ozbay
(2009)

Transportation
Research
Record

Enhanced
SPSA

Flow,
Speed

P
lane
P

time
jQreal�Qsim j

Qreal
þ jSreal�Ssim j

Sreal

h i
K-S test 2 (mean headway

and mean
reaction time)

I-880 in Hayward,
California

PARAMICS

Hourdakis Transportation Non-linear Speed
Pst

j¼1
Pm

i¼1 v j
si � v j

ai

� 	2
RMSE, Theil’s 12 (max. acc. TH-160 from the AIMSUN

(continued on next page)
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Calibration
Other Approaches

Table 1 (continued)

Authors Journal Algorithm1 Metric Fitness function Performance
measurements2

No. of calibration
parameters

Case study Software

et al.
(2003)

Research
Record

Programming
Techniques

Inequality
Coefficient

rate, max. speed
diff, and avg.
speed etc.)

interchange with I-
494 and ending
with I-94

Chiappone
et al.
(2016)

Expert system
with
application

GA Speed,
Density

1
N

PN
k¼1

1
2 ðDk � DkðbÞÞ2 þ 1

2 ðSk � SkðbÞÞ2
h i

Speed-Density
graph

3 (reaction time,
min. distance
between vehicle,
and max. desired
speed)

A22, freeway, Italy AIMSUN

Menneni
et al.
(2008)

Transportation
Research
Record

GA Maximum
5-min
flows

Sum of all the speed-flow area in the field data that is not
covered by simulated data

Flow-Speed
graph

5 (CC1, CC2, CC3,
CC4, and CC5)

US-101, San Mateo,
California

VISSIM

Abdalhaq
and
Baker
(2014)

Journal of
Algorithm and
Optimization

GA, TS, PS, and
SPSA

Travel
Time

Pn

i¼1

jsimi�observedi j
observedi
n Average Fitness 4 (deceleration,

acceleration, and
driver
imperfection etc.)

A signalized
segment in a vital
city center

SUMO

Paz et al.
(2015)

Transportation
Research Part C

Memetic
Algorithm,
and SPSA

Vehicle
Counts
and
Speeds

1ffiffiffi
N

p
PT

t¼1 W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
Vi;t�VðhÞi;t

Vi;t

� 	2r
þ ð1�WÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Si;t�SðhÞi;t
Si;t

� 	2r !
GEH 11 for freeway

and 15 for
surface streets
(pedestrian
delays, and max.
deceleration etc.)

A portion of the
Pyramid Highway
in Reno, NV and a
hypothetical
network provided
by McTrans

CORSIM

Hale et al.
(2015)

Transportation
Research Part C

SPSA and
‘‘Directed
Brute Force”
(DBF)

Speed and
Density

Minimize the Difference between Simulated and Field-
measured outputs

Objective
Function Value

5 (entry
headway, and
off-ramp reaction
distance etc.)

I-95 near
Jacksonville, FL

FRESIM

1 OQMS, OptQuest/Multistart Algorithm; GA, Genetic Algorithm; IA, Trial-and-Error Method; SPSA, Simultaneous Perturbation Stochastic Approximation; PS, Particle Swarm Optimization; TS, TS.
2 RMSPE, root mean square percent error; RMSE, root-mean-square error; GEH, Geoffrey E. Havers statistics; MAER, mean absolute error ratio; GRE, global relative error; RMSN, Normalized root-mean-square

error.
3 MTH, mean target headway; MRT, mean reaction time; AGGR, driver aggressiveness.
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Calibration
Fitting Macroscopic Data

Alternately, one can use point-sensor data at multiple locations to calibrate
car following models. The data from the most upstream sensor can be used
as initial conditions along with a approx. trajectory constructed from the
lead vehicle data at all other locations.

The follower vehicles can then be simulated using car following models and
the velocities at the sensor locations can be used to match the measured
values using least squares type objectives as shown below
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or a convex combination of such objectives for other measurements such
as flow.
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Calibration
Example

326 16 Calibration and Validation
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Fig. 16.5 Calibrating the IDM to aggregated stationary detector data of a traffic jam on a German
Autobahn. Shown are the local speed reconstructed from the data (top left), the simulated local speed
(bottom left), and one-minute speed averages of some of the real and simulated virtual detectors
(right). Also shown are the positions of the detectors (thin black lines)

16.3.1 Fitting Local Properties of Traffic Flow

In this subsection, we proceed analogously to the calibration to microscopic data and
formulate objective functions in terms of deviations of simulated and locally mea-
sured quantities such as time series of speed and flow. Vehicle number conservation
implies that the integrated flow is fixed while no such restrictions apply for the speed.
Therefore, speed differences are generally more suitable.19

Calibrating car-following models to stationary detector time series. In the fol-
lowing, we present the procedure in form of an example and calibrate the Intelligent
Driver Model (IDM) to lane-averaged one-minute stationary detector data record-
ing a breakdown in oscillatory congested traffic on the German Autobahn A5-South
near Frankfurt (Fig. 16.5). The simulation is driven by the data of the most upstream
detector serving as in-flowing boundary condition and, near the downstream end of
the simulated region, by the flow data of an on-ramp. All other detectors (some of
which are indicated by the black lines in Fig. 16.5a) serve for calibration. Generaliz-
ing the microscopic definitions, we formulate the objective function in terms of the
speed readings of the real and simulated virtual detectors inside the simulated region

19 Notice that we gave the opposite recommendation when calibrating to extended floating-car
data or single trajectory data: There, the integrated speed is externally fixed by the leader while no
constraints apply to the gap, i.e., the microscopic density.
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Lecture Outline

Simulators
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Simulators
Introduction

Several commercial and non-commercial tools are available for microscopic
simulation of traffic.

I SUMO

I VISSIM

I AIMSUN

I CORSIM

I PARAMICS

I TRANSYT

I TransModeler

I CityFlow

Lecture 6 Calibration and Simulators
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Simulators
Demo

Install SUMO from https://www.eclipse.org/sumo/ and perform the
following tasks

I Create a small network of links in netedit

I Adjust the number of lanes, speeds, and update the connectors

I Generate flows from one edge to another

I Add a detector to measure point-sensor data

I Save the network, routes, and additional elements, and the
configuration files

I Run your model using sumo-gui and notice the sensor outputs

Lecture 6 Calibration and Simulators
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Your Moment of Zen
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