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Previously on Traffic Engineering

Throughout this lecture, we will refer to the lead vehicle using i − 1 and
the follower using i . The symbol x denotes the distance from a reference
point and si indicates the spacing between the front ends of the vehicles.

ሶ𝑥𝑖 ሷ𝑥𝑖 ሶ𝑥𝑖−1 ሷ𝑥𝑖−1

𝑙𝑖 𝑙𝑖−1
𝑥𝑖

𝑥𝑖−1

𝑠𝑖 = 𝑥𝑖−1 − 𝑥𝑖

The time gap of the following vehicle will be denoted using gi and the
distance between the rear end of the lead vehicle and front end of the
following vehicle will be represented as g x

i .
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Previously on Traffic Engineering

Mathematically, let the acceleration of vehicle i , ẍi (si , vi ,∆vi ) be written
as a function of the spacing si , velocity of the current vehicle vi , and the
speed differential ∆vi = vi − vi−1.

Dependence on t is not shown in the above expressions but is implicitly
assumed. The required properties can be expressed as

I As vehicles travel faster, they tend to accelerate less

∂ẍi (si , vi ,∆vi )

∂vi
< 0

I If there is no vehicle in front, drivers prefer to travel at a desired
speed

lim
si→∞

ẍi (si , v
max
i ,∆vi ) = 0
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Previously on Traffic Engineering

I If a lead vehicle is far away, the following vehicle must accelerate

∂ẍi (si , vi ,∆vi )

∂si
≥ 0, lim

si→∞

∂ẍi (si , vi ,∆vi )

∂si
= 0

I Acceleration decreases with increase in speed differential

∂ẍi (si , vi ,∆vi )

∂∆vi
≤ 0
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Lecture Outline

1 Discrete-Choice Based Models

2 MOBIL
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Lecture Outline

Discrete-Choice Based Models

Lecture 5 Lane Changing Models



7/23

Discrete-Choice Based Models
Introduction

So far, we have seen how to model the speeds and accelerations of vehicles
using coupled ODEs that include variables from a lead vehicles.

Lane changing is another important action taken by vehicles in uninter-
rupted traffic. While lane changing can help individual drivers, it can
result in congestion for upstream traffic.

Unlike the car-following models, lane changing involves discrete actions of
whether to shift lanes or not. These maneuvers are complicated because
they involve behavioural perceptions and responses to brake lights and
indicators.

Lecture 5 Lane Changing Models
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Discrete-Choice Based Models
The Grass is Green on the Other Side

Drivers often feel that the next lane is moving faster even if they have the same
average speeds.

This can be tested using simple car following models
without lane changes and by tracking the time spent
overtaken and comparing it with the time spent over-
taking.

This plot by Redelmeir and Tibshirani show these metrics
for every 10 minutes of travel.

© 1999 Macmillan Magazines Ltd

Switching lanes while driving along a
busy road can be a risky manoeuvre. It
is often instigated on the driver’s

judgement that the cars in the next lane are
moving faster than those in the driver’s own
lane. But faulty intuition1–3 may cause peo-
ple to overestimate the speed of vehicles in
the next lane, believing that they are mov-
ing faster even when both lanes have the
same average speed. We suggest that this
illusion occurs because more time is gener-
ally spent being overtaken (passed) by other
vehicles than is spent in overtaking them.
Knowing that this effect is illusory might
encourage drivers to resist small tempta-
tions to change lanes.

We used computer simulations to create
two lanes of traffic with identical character-
istics, except that their congestion varied
depending on random starting gaps. Vehicles
then accelerated if no other vehicle was
within the minimum headway distance,
otherwise they decelerated. Minimum
headway distances increased with higher
velocities to prevent collisions. 

We evaluated statistically the movements
of an individual driver compared with all
the others in the next lane. Under baseline
conditions, many one-second epochs pro-
duced a change in the driver’s relative posi-
tion. Epochs in which the index vehicle was
overtaken were more frequent than epochs
in which the index vehicle was overtaking
another vehicle (Fig. 1). The total number of
vehicles that passed the driver was balanced
by the total number of vehicles that were
overtaken by the driver because of multipli-
city in some epochs.

Doubling the acceleration generated a
larger difference, and halving the minimum
headway distance, to represent ‘tailgating’,
greatly increased the difference. Reducing
the frequency with which the index driver
glanced at the next lane from once every
second to once every two seconds attenuated
the difference. No combination yielded a
slower apparent speed for the next lane.

We also videotaped traffic sequences by
mounting a camera in a moving vehicle and
filming the side-view perspective of the next
lane on a congested road. When a section 
of videotape showing a slightly slower aver-
age speed in the next lane was screened to 
driving students (n4120), 70% stated that
the next lane was moving faster and 65%
said they would change lane if possible.

From these results, we suggest that drivers
are responding to an illusion: namely, that
the next lane on a congested road appears
to be moving faster than the driver’s present
lane, even when both lanes have the same

average speed. This occurs because vehicles
spread out when moving quickly and pack
together when moving slowly. A driver can
therefore overtake many vehicles in a brief
time interval, but it takes much longer for
the driver to be overtaken by the same
vehicles.

Other aspects of human perception may
accentuate the impression that the next lane
is moving faster. Differential surveillance
can occur because drivers look forwards
rather than backwards, so vehicles that are
overtaken become invisible very quickly,
whereas vehicles that overtake the index
driver remain conspicuous for much

longer4. Moreover, a driver is more likely 
to glance at the next lane for comparison
when he is relatively idle5 while moving
slowly.

Even if attention was not focused in
particular directions and was evenly spaced
in time, human psychology may make
being overtaken (losing) seem more salient
than the corresponding gains6. Further-
more, misconceptions about randomness
can make runs of overtaking and being
overtaken seem unduly prolonged7,8. Our
study highlights the effects of congestion
and the increasing importance of the illu-
sion, given that the number of miles trav-
elled by vehicles is increasing at a much
faster rate than the amount of roadway9,10.
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Why cars in the next lane seem to go faster
The temptation to change lanes on a motorway may be prompted by an illusion.
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Figure 1 Relation of traffic density to the amount of time spent

overtaking and being overtaken. All time estimates have standard

errors of less than 5 seconds that decrease with traffic density.

For example, a driver travelling for 10 minutes on a roadway with

congestion of about 100 vehicles per kilometre would spend 47

seconds being overtaken by vehicles in the other lane and about

35 seconds overtaking vehicles in the other lane if both lanes

have the same average speed. Details of simulation models are

available from the authors.

Rare-earth metals

Is gadolinium really
ferromagnetic?
Gadolinium is accepted to be one of the
four ferromagnetic elements, along with
iron, cobalt and nickel, although its Curie
point, TC (the temperature above which 
ferromagnetism is lost), is only 292 K. Ferro-
magnets exhibit a characteristic divergence
of their susceptibility at TC, but no such
divergence in any direction is found for
needle-shaped crystals of gadolinium.
Instead, the susceptibility diverges at a lower
spin-reorientation temperature, Tsr, of 225
K, where the anisotropy changes sign. We
propose that the magnetic order between

Tsr and TC is not truly ferromagnetic, but 
is akin to the incommensurate order found
in erbium.

It used to be thought1 that gadolinium
had a helical spin structure similar to that 
of terbium, dysprosium and holmium, but
that it became ferromagnetic when a small
field (∼1 kA m11) was applied. This idea
was discounted after neutron diffraction2

showed that the turn angle must be smaller
than 2 degrees. Gadolinium is considered to
be the only simple ferromagnet among the
rare-earth metals. Moments lie along the
hexagonal c-axis between TC and Tsr , where
they become inclined at an angle to c which
reaches 65 degrees at 180 K.

Previous studies3 of the anisotropic 
susceptibility, x4M/H, where M is the

They also showed a video of slower moving traffic in an adjacent lane but about
70% of the participants felt that the next lane was moving faster.

A potential reason is that vehicles which are overtaken are visible to the driver
only for a short time compared to those that overtake the driver.

Lecture 5 Lane Changing Models



9/23

Discrete-Choice Based Models
Introduction

Lane change models are generally classified as

I Mandatory Lane Changing

I Discretionary Lane Changing

Mandatory lane changes occur when a driver has to exit from a highway
facility, or avoid a work zone, or merge onto a highway.

Discretionary lane changes on the other hand are done to avoid trailing
behind slow moving vehicles or heavy vehicles.

Lecture 5 Lane Changing Models
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Discrete-Choice Based Models
Target Lane Model

What are the factors that influence decisions of drivers to change lanes?

neighbor lane. In SITRAS (5) downstream turning movements and
lane blockages may trigger either MLC or DLC, depending on the
distance to the point where the lane change must be completed. MLC
are also performed to obey lane-use regulations. DLC are performed
in an attempt to obtain speed or queue advantage, defined as the adja-
cent lane allowing faster traveling speed or having a shorter queue.
A similar model is used in MRS (6).

Ahmed et al. (7 ) and Ahmed (8) developed and estimated the
parameters of a lane-changing model that captures both MLC and
DLC situations. A discrete choice framework is used to model three
lane-changing steps: decision to consider a lane change, choice of a
target lane, and acceptance of gaps in the target lane. When an MLC
situation applies, the decision to respond to it depends on the time
delay since the MLC situation arose. DLC is considered when MLC
conditions do not apply or the driver chooses not to respond to them.
The driver’s satisfaction with conditions in the current lane depends
on the difference between the current and desired speeds. The model
also captures differences in the behavior of heavy vehicles and the
effect of the presence of a tailgating vehicle. If the driver is not sat-
isfied with driving conditions in the current lane, neighboring lanes
are compared with the current one and the driver selects a target
lane. Lane utilities are affected by the speeds of the lead and lag
vehicles in these lanes relative to the current and desired speeds of
the subject vehicle. A gap acceptance model is used to represent the
execution of lane changes. Ahmed estimated the parameters of this
model with second-by-second vehicle trajectory data. The model does
not explain the conditions that trigger MLC situations. Therefore,
parameters of the MLC and DLC components of the model were esti-
mated separately. The MLC model was estimated for the special case
of vehicles merging to a freeway, under the assumption that all vehi-
cles are in an MLC state. Gap acceptance models were estimated
jointly with the target lane model in each case.

Wei et al. (9) developed a model for drivers’ lane selection when
turning into two-lane urban arterials. The model captures the effect of
the driver’s path plan on the lane choice. Arterial lanes are classified
according to the following criteria:

• Target (nontarget) lane—a lane (not) connecting to the turn the
driver wishes to perform at the next intersection.

• Preemptive (nonpreemptive) lane—a lane (not) connecting to
the turn the driver wishes to perform at an intersection further
downstream.

• Closest (farther) lane—the lane closest to (farther away from)
the curb on the side from which the driver is turning into the arterial.

Toledo et al. Paper No. 03-3391 31

Using observations made in Kansas City, they identified a set of
deterministic lane selection rules:

• Drivers wishing to turn at the next intersection choose the target
lane.

• Drivers wishing to turn farther downstream choose the preemp-
tive lane if it is the closest. If the preemptive lane is the farthest, the
choice is based on the aggressiveness of the driver.

• Drivers already traveling on the arterial remain in their lanes.

Gap acceptance is an important element in most lane-changing
models. To execute a lane change, the driver assesses the positions
and speeds of the lead and lag vehicles in the target lane (see Fig-
ure 1) and decides whether the gap between them is sufficient to
execute the lane change.

Gap acceptance models are formulated as binary choice problems,
in which drivers decide whether to accept or reject the available gap
by comparing it with the critical gap (minimum acceptable gap). Crit-
ical gaps are modeled as random variables to capture the variation in
the behaviors of different drivers and for the same driver over time.

In CORSIM, critical gaps are defined through risk factors. The
risk factor is defined by the deceleration a driver will have to apply
if the leader brakes to a stop. The risk factors to the subject vehicle
with respect to the intended leader and to the intended follower with
respect to the subject vehicle are calculated for every lane change.
The risk is compared with an acceptable risk factor, which depends
on the type of lane change to be performed and its urgency.

Kita (10) used a logit model to estimate a gap acceptance model for
the case of vehicles merging from a freeway ramp. He found that
important factors are the length of the available gap, the relative speed
of the subject with respect to mainline vehicles, and the remaining
distance to the end of the acceleration lane.

Ahmed (8), within the framework of the lane-changing model
described previously, assumed that the driver considers the lead gap
and the lag gap separately. Both gaps must be acceptable to execute
the lane change. Critical gaps are assumed to follow a lognormal dis-
tribution to guarantee that they are nonnegative. Ahmed jointly esti-
mated the parameters of the target lane and gap acceptance models.
He found that lead and lag critical gaps in MLC situations are smaller
than those in DLC situations.

In summary, a number of lane-changing models have been pro-
posed in the literature. However, there has been very little rigorous
estimation of the parameters of these models. Most models either
ignore the issue of calibration completely or assume values for some

Subject
vehicle

Lead
vehicle

Lag
vehicle

Lead gapLag gap

Traffic direction

Front
vehicle

Front spacing

Adjacent gap 

FIGURE 1 Definitions of front, lead, and lag vehicles and their relations with the 
subject vehicle.I Lead and lag gaps

I Speed differences between the subject and other vehicles

I Type of subject and lead/lag vehicles

I Keep left/right rules
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Discrete-Choice Based Models
Target Lane Model

Imagine a driver i can choose from three actions TL = CL,RL, LL that
indicate the current lane, right lane, and left lanes. Time is typically
discretized into a finite number of intervals.

The utility of a driver for choosing a particular lane can be written as

UTL
i (t) = βTLXTL

i (t) + αTLνi + εTLi (t)

where XTL
i (t) is a vector of explanatory variables that capture the neigh-

bourhood of a driver and additional variables associated with their path
such as highway exits.

νi is constant across time but is different for different times. It captures
correlations between observations and is assumed to be Gaussian across
the population with parameter αTL.

Lecture 5 Lane Changing Models
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Discrete-Choice Based Models
Target Lane Model

Assuming that εs at each time step for each driver are iid Gumbel dis-
tributed, the conditional probability of choosing a lane given the individual-
specific error term is

Pi (TL|νi ) =
exp(βTLXTL

i (t) + αTLνi )∑
TL′ exp(βTL′

XTL′
i (t) + αTL′νi )

One of the α values has to be normalized to zero to avoid identification
issues.

Once the driver decides to change to a particular lane, they must also
check if the gap is sufficient for a lane change.

Lecture 5 Lane Changing Models
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Discrete-Choice Based Models
Gap Acceptance Model

Different drivers may be comfortable at changing lanes at different thresh-
olds. These are captured using distance gaps.

32 Paper No. 03-3391 Transportation Research Record 1857

speed advantage offered by the left lane (discretionary considera-
tion). Hence, the driver may choose to stay in the left lane until he or
she passes Vehicle B.

INTEGRATED LANE-CHANGING MODEL

In this section, an integrated lane-changing model, in which the
driver jointly evaluates mandatory and discretionary considerations,
is presented. The lane-changing process consists of two steps: choice
of target lane and gap acceptance decisions. This decision process is
latent because the target lane choice is unobservable; only the driv-
er’s lane-changing actions are observed. The structure of the model
is presented in Figure 3. Latent choice variables are indicated as
ovals, observed ones are rectangles.

The target lane is the lane the driver perceives as best to be in. The
Current branch corresponds to a situation in which the driver decides
not to pursue a lane change. In the Right and Left branches, the driver
perceives that moving to these lanes, respectively, would improve his
or her condition. In these cases, the driver evaluates the adjacent gap
in the target lane and decides whether the lane change can be executed
or not. Only if the driver perceives that the gap is acceptable is the
lane change executed (Change Right or Change Left); otherwise, the
driver does not execute the lane change (No Change). This decision
process is repeated at every time step.

Explanatory variables for lane-changing behavior can be classified
into the following types of considerations:

1. Neighborhood variables: The vehicle’s surroundings strongly
affect behavior. Most importantly, the presence of other vehicles
and their actions directly influence drivers’ decisions. Both the tar-
get lane and gap acceptance decisions depend on the relative posi-
tions and speeds of the subject vehicle with respect to the vehicles
surrounding it. Other elements in the vehicle’s surroundings that may
affect behavior include geometry elements, signals and signs, and
police presence.

2. Path plan variables: Drivers are assumed to have already
selected a destination, path, and desired arrival time for their trip.
These decisions affect driving behavior because drivers change lanes
to follow their paths. Variables in this group may include the distance
to a point when the driver needs to be in a specific lane to follow a path
and the number of lane changes required to be in the correct lane.

3. Network knowledge and experience: Variables that capture
drivers’ considerations and preferences based on their knowledge
and experience with the transportation system. For example, free-

A

B

Traffic direction

RIGHTLEFT CURRENT
Target
lane

Gap
acceptance

CHANGE
RIGHT

CHANGE
LEFT

NO
CHANGE

NO
CHANGE

NO
CHANGE

FIGURE 2 Lane-changing situation illustrating integrated 
lane-changing model.

FIGURE 3 Structure of lane-changing model.

parameters and use ad hoc procedures to determine values for others.
Moreover, existing models are based on a rigid separation between
MLC and DLC and therefore suffer from two important weaknesses:

1. They do not capture trade-offs between mandatory and dis-
cretionary considerations.

2. These models assume that the existence (or nonexistence) of an
MLC situation is known (i.e., drivers start responding to the MLC sit-
uation at a certain point, often defined by the distance from the point
where they have to be in a specific lane). However, except for very
special cases, such as on-ramp merging traffic, the emergence of
MLC situations is unobservable. Therefore, the conditions that trig-
ger MLC have not been estimated. Instead, microsimulators use sim-
ple rules to determine whether MLC conditions apply. The parameters
of these rules usually are based on the modelers’ judgment.

The model proposed in this paper overcomes these limitations of
existing models by integrating mandatory and discretionary consid-
erations into a single utility model. The relative importance of these
considerations varies depending on explanatory variables such as the
distance to the off-ramp. This way the awareness of the MLC situa-
tion is more realistically represented as a continuously increasing
function instead of a step function. To illustrate the advantage of the
integrated utility approach, consider the situation presented in Fig-
ure 2. Suppose Vehicle A is planning to use the off-ramp, and Vehi-
cle B is a slow-moving heavy vehicle. In existing models, once
Vehicle A enters an MLC state it will change to the right lane and
stay in it until the off-ramp. The presence of Vehicle B does not affect
this behavior. The proposed model captures the trade-off between the
utility of being in the correct lane (mandatory consideration) and the

Critical gaps can be estimated empirically. Since gaps are positive quanti-
ties, the critical values are assumed to follow a log-normal distribution.

ln(g x,cr ,lead,TL
i (t)) = βleadX lead,TL

i (t) + αleadνi + εleadi (t)

where TL is the target lane which can either be LL or RL and εs are
Gaussian. A similar expression can be written for the critical lag gap.

Lecture 5 Lane Changing Models
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Discrete-Choice Based Models
Gap Acceptance Model

Suppose lTL(t) represents a random variable which takes 1 if a lane change to
TL is executed at time t.

The probability that a driver i will change to a target lane TL given νi , P(lTL(t) =
1|TL, νi ), therefore equal to

P
[
g x,lead,TL
i (t) > g x,cr,lead,TL

i (t)|TL, νi
]
P
[
g x,lag,TL
i (t) > g x,cr,lag,TL

i (t)|TL, νi
]

= Φ

(
ln(g x,lead,TL

i (t))− βleadX lead,TL
i (t)− αleadνi

σlead

)

Φ

(
ln(g x,lag,TL

i (t))− βlagX lag,TL
i (t)− αlagνi

σlag

)

The subscript i is being ignored in some of the terms since it is clear from the
context.

Lecture 5 Lane Changing Models



15/23

Discrete-Choice Based Models
Gap Acceptance Model

For the scenario shown in the following figure, find the probability of changing
lanes

Transportation Systems Engineering 15. Lane Changing Models

acceleration. Consider update time 1 sec. Maximum deceleration driver ready to apply is -2

m/s2 and maximum acceleration feasible is -2.2 m/s2 Assume that lane change take 1 second.

Given: σlead =2, σlead = 3 ,Glead =40m, Glag =50m ,βlead = βlag = 1 ,Xnlead = Xnlag = 0.8,

V lead
n = V lag

n = 0.7 , αlead =αlag = 1.2

N−1

y

Y
X

X

lag vehicle

DIRECTION OF TRAFFIC FLOW

20.83 m/s

18 m/s

18 m/s

N

19.4 m/s

lead vehicle

30 m

40m50 m

Subject

Solution Step 1. Decision to change the lane: In the case of discretionary lane change,

the decision to change the lane is taken by the driver when he finds higher utility in any other

lane. Here, we consider higher speed or desired speed as higher utility. Let the desired speed

be 25 m/s2. Considering the subject vehicle as vehicle n and the vehicle preceding it in the

current lane as vehicle n-1, we calculate the minimum distance required by the subject vehicle

to attain the desired speed in a time T

Dx = xn−1(t)− Sn−1 − xn(t)

Vn(t+ T ) = bn T +
√

b2nT
2 − bn (2Dx − VnT − Vn − 12/b)

25 = −2× 1 +
√

−22 + (2 Dx − 19.4 + 182/2.5)

The Dx in this problem is 155 m, which means that the subject vehicle requires at least 155 m

to reach his desired speed. But the gap available is 30 m. So decision is to change the lane or

trigger DLC.

Step 2. Check for the feasibility of lane change: A lane change is said to be

feasible if the subject vehicle is able to maintain maximum safe speed with respect to the

preceding vehicle in the target line. In order to find the maximum safe speed possible for the

subject vehicle to avoid collision we consider the subject vehicle as N and preceding vehicle in

the target lane as N-1. Then we substitute the values in the second equation. Vn(t + T ) =

−2× 1 + [−22 + 22(40)− 19.4 + 182/2.5]1/2 = 17.6m/s And the deceleration required = (17.6-

19.4)/1 = -1.79 m/s2 Since -1.79 m/s2 less than -2.2 m/s2 the lane change feasible to avoid

Dr. Tom V. Mathew, IIT Bombay 15.8 February 19, 2014

Assume that

I σlead = σlag = 2

I β lead = β lag = 1

I X lead,TL
i (t) = X lag,TL

i (t) = 0.8

I νi = 0.7 and αlead = αlag = 1.2
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Discrete-Choice Based Models
Joint Model

Note that from data, we can only observe the final lane changing action. Math-
ematically, we can estimate the following marginal probability,

Pi (l
TL(t)|νi ) =

∑
TL

Pi (TL, l
TL(t)|νi ) =

∑
TL

Pi (TL|νi )Pi (l
TL(t)|TL, νi )

How to construct a likelihood function? The decisions at different time steps are
treated as independent events and hence we find∏

t

Pi (l
TL(t)|νi )

The unconditional likelihood function can then be written as

Li =

∫
ν

∏
t

Pi (l
TL(t)|νi )dΦ(νi )

This can be summed across drivers to estimate parameters.

Lecture 5 Lane Changing Models
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Discrete-Choice Based Models
Mandatory Lane Changes

Mandatory lane changes can be modeled differently since the action must
be complete at a certain distance.

For instance Yang and Koutsopoulos suggest that the probability of chang-
ing lanes at a distance xi away is given by

pi =

{
exp

(
(xi − x0)2/σ2

n

)
xi > x0

1 xi ≤ x0

where x0 is the critical distance beyond which a lane change is inevitable.

The parameter σi = α0 + α1mi + αK is calibrated from data where mi

is the number of lanes between the current lane and the target lane and
k is traffic density. The acceptable gaps are given by another rule-based
formula.

Lecture 5 Lane Changing Models
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Lecture Outline

MOBIL
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MOBIL
Introduction

Minimizing overall braking deceleration induced by lane changes (MOBIL)
is another popular lane changing model which is relatively simpler.

This model also selects the action that results in maximum utility, but the
utility is deterministic and is expressed in terms of accelerations.

Additionally, the model makes safety checks to prevent collisions and un-
reasonable decelerations of the subject and other vehicles

A major advantage of the MOBIL model is that it can easily be plugged
into other car-following models.

Lecture 5 Lane Changing Models
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MOBIL
Safety Criterion

Suppose i represents the subject vehicle and let j denote other vehicles
(lead/lag vehicles) in the adjacent lane.

A lane change is carried out only if aj > −b for all vehicles where b is the
comfortable deceleration rate, similar to the one used in IDM.

The acceleration of the lag vehicle in the adjacent vehicle should be up-
dated assuming that the subject vehicle made a lane change before check-
ing for this criterion.

Lecture 5 Lane Changing Models



21/23

MOBIL
Incentive Criterion

The target lane which allows the vehicle to accelerate the most is chosen.

TL∗ = arg maxUi (TL) = arg max aTLi

.

𝑔𝑖
𝑥,𝑙𝑎𝑔,𝑇𝐿 𝑔𝑖

𝑥,𝑙𝑒𝑎𝑑,𝑇𝐿

𝑔𝑖
𝑥,𝑙𝑎𝑔,𝐶𝐿 𝑔𝑖

𝑥,𝑙𝑒𝑎𝑑,𝐶𝐿

However, this criterion can induce frequent lane changes. To avoid such
artifacts, it is modified as

aTLi − aCLi + p (Difference in accelerations of lag vehicles) > ∆a + abias

Lecture 5 Lane Changing Models
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MOBIL
Incentive Criterion

244 14 Lane-Changing and Other Discrete-Choice Situations

Table 14.1 Parameters of the lane-changing models 14.4–14.7

Parameter Typical value

Limit for safe deceleration bsafe 2 m/s2

Changing threshold Δa 0.1 m/s2

Asymmetry term (keep-right directive) abias 0.3 m/s2

Politeness factor p (MOBIL lane-changing model) 0.0–1.0

The parameters bsafe and Δa apply to any changing model, abias �= 0 only if asymmetric driving
rules are to be modeled, and p �= 0 if the drivers are not purely egoistic

abias would be positive for changes to the left, and reverses its sign for changes to
the right. This contribution should be relatively small (|abias| � bsafe) but greater
than Δa. Otherwise, vehicles would not change to the right lanes if the highway was
essentially empty (see Table 14.1).

Jamming paradox: The grass is always greener on the other side. A motivation
to change lanes in jammed situations is the observation that the other lanes are faster,
most of the time, suggesting that these lanes are “better”. In Problem 14.1 we show
that this is a fallacy: Even if the travel times on all lanes are the same, the fraction of the
time one finds oneself on the slower lane is greater than 50 % on any lane. The fallacy
is resolved by observing that, when the other lanes are slower, the active overtaking
rate (overtaken vehicles per time unit) is greater than the passive overtaking rate in
the periods where the other lanes are faster. Since the models presented here do not
include tactical components, the simulated drivers also succumb to this fallacy and
tend to change lanes unnecessarily often.

14.3.3 Lane Changes with Courtesy: MOBIL Model

The changing conditions (14.4) and (14.5) characterize purely egoistic drivers who
consider other drivers only via the safety criterion. If the lane change is mandatory as
in lane-closure or merging situations, this behavior is plausible (and, additionally, the
changing threshold Δp = 0). On the other hand, if the lane change is not necessary
(also termed a discretionary lane change), most drivers refrain from changing lanes if
their own advantage is disproportionally small compared to the disadvantage imposed
on others, even if the safety criterion is satisfied. This can be modeled by augmenting
the balance of the incentive criterion with the utilities of the affected drivers, weighted
with a politeness factor p,

âα − aα + p
(

â f̂ − a f̂ + â f − a f

)
> Δa + abias MOBIL incentive. (14.7)

For the special case when politeness p = 1 (corresponding to a rather altruistic driver),
no bias (abias = 0), and negligible threshold (Δa = 0), a lane change takes place if the

For the lane changing example shown earlier, use the GM car following
model and check if the safety criterion and incentive criterion are satisfied.

Lecture 5 Lane Changing Models



23/23

Your Moment of Zen

Lecture 5 Lane Changing Models


