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Previously on Traffic Engineering

Flow or Flux: Is defined as the number of vehicles passing across a point
in a given amount of time T .

q =
∆N

T

Headway: It is the time taken between the arrivals of the front end of
successive vehicles.

hi = ton
i − ton

i−1

Density or Concentration: It is the number of vehicles in a unit length
of the road.

k =
∆N

L

Spacing: It is the distance between the current vehicle and its lead vehicle.

si = xi−1 − xi
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Previously on Traffic Engineering

Speed: Speed of individual are easy to measure using mobile sensors
(Why?) Using point sensors, we can compute average of speeds across
multiple vehicles. This is called time-mean speed.

vt =
1

∆N

∑
i

vi

Speeds of individual vehicles can also be aggregated across space to derive
space-mean speed.

vs =

∑
i vi

L
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Previously on Traffic Engineering

Time- and Space-mean average speeds are usually different,
especially when traffic conditions are not homogeneous.

For example, consider a two-lane highway where each car
in the right lane has a speed 60 kmph and that on the left
lane has a speed 30 kmph.

Suppose that the vehicles are uniformly spaced and that the
flow of vehicles on both lanes is 1200 vehicles per hour.

What are the time- and space-mean average speeds?
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Lecture Outline

1 Relationships between Traffic Variables

2 Single-Regime Models

3 Multi-Regime Models
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Relationship between Traffic Variables
Speeds

Let us extend the earlier example to connect the
time-mean and space-mean speeds.

Imagine a scenario with multiple lanes 1, . . . ,C each
with uniform traffic with capacity qi , density ki , and
speeds vi .

Let q =
∑

i qi be the total flow and k =
∑

i ki be
the total density.

Let fi = qi/q and f ′i = ki/k be the proportion of
observing a certain colour of vehicle across time and
space.

For each lane, we can write qi = kivi since the headway is qi and spacing
is vi/qi .
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Relationship between Traffic Variables
Speeds

Time-mean and space-mean speeds for this setting can be written as

vt =
C∑

i=1

fivi

vs =
C∑

i=1

f ′i vi

Notice from the definition of the space-mean speed that

vs =
C∑

i=1

ki

k
vi =

1

k

C∑
i=1

qi =
q

k

Hence, we can write q = kvs for non-homogeneous traffic but the speed v
in this expression is the space-mean speed.
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Relationship between Traffic Variables
Speeds

Theorem (Wardrop (1952))

Suppose σ2
s represents the sample variance of the space-mean speeds

vt = vs +
σ2

s

vs

vt =
C∑

i=1

qi

q
vi =

C∑
i=1

kiv
2
i

q
=

C∑
i=1

ki

k

v2
i

vs

=
C∑

i=1

f ′i

(
vs + (vi − vs)

)2

vs

= vs +
σ2

s

vs
(Why?)

This result indicates that time-mean speeds are always greater than or
equal to space-mean speed and both are equal when traffic is homogeneous.
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Relationship between Traffic Variables
Speeds

Although the previous proposition connects the two speed measures, it is
not that useful to estimate the space-mean speed from time-mean speed
since σ2

s is not known. We will discuss an alternate approach soon.

The example presented applies to non-homogeneous single/multi lane traf-
fic as well. We could imagine subsidary streams with different densities
although it can result in shocks as we will see later in the course.

These results by Wardrop are from the same paper that discusses user
equilibrium and system optimum assignment. This paper also includes
methods to optimally design traffic signals.
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Relationships between Traffic Variables
Point Sensor Data Revisited

Recall that the following traffic variables are best obtained from spatial
sensors:

I Spacing

I Density

I Space-mean speed

However, spatial information is often approximated from point-sensor data
since it is easy to collect the latter.
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Relationships between Traffic Variables
Spacing

The spacing between two vehicles can be approximated using the headway
and the velocity of the lead vehicle.

si = vi−1hi

Time

Sp
ac
e

Vehicle 𝑖 − 1

Vehicle 𝑖

ℎ𝑖

𝑠𝑖

Note that this is an approximation since it implicitly assumes that the
velocity of the lead vehicle remains the same during hi .
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Relationships between Traffic Variables
Density

Recall that density k is related to average spacing s. Hence,

1

k
= s =

1

∆N

∑
i

vi−1hi

The above expression can be directly used to find the approximate density. We
can also connect it with the volume in the following way

1

k
=

1

∆N

∑
i

vi−1hi ≈
1

∆N

∑
i

vihi

Suppose that v and h indices the vector of speed and headway measurements

and Ĉov is the sample covariance of these

Ĉov(v, h) =
1

∆N − 1

∑
i

(vi − vt)(hi − h)

≈ 1

∆N

∑
i

(vi − vt)(hi − h)

=
1

∆N

∑
i

vihi − vth
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Relationships between Traffic Variables
Density

Equating 1
∆N

∑
i vihi in the above equations,

1

k
= vth + ĉov(v,h)

=
vt

q
+‘Cov(v,h)

Rewriting, the above expression and multiplying and dividing by q
vt

,

k =

Å
vt

q
+‘Cov(v,h)

ã−1

=
q

vt

Å
1 +

q

vt

‘Cov(v,h)

ã−1

In light traffic, the speeds are usually independent of headways. However,
as speeds tend to zero, headways tend to be larger and the inverse portion
would be > 1.
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Relationships between Traffic Variables
Density

Thus, if we used vt instead of vs in estimating density, we would underes-
timate it.

4 Victor Knoop, Serge Hoogendoorn and Henk van Zuylen

3.1 Computed densities for the roadway

Fig. 1 reads the quotient of the time mean speed compared and the space
mean speed for different speeds. It thus shows for different speeds how large
the difference is between the two averages. We see for lower speeds, the two
averages are more distinct. Using Eq. 1, this can only be explained by a low
variation of speeds in the higher speed regions. For the same reason, the
speed variation in congestion must be higher. Higher aggregation times make
the differences grow, so the speed variation grows.
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Fig. 1. (left) average speed difference (middle) densities, 10 s aggregation time
(right) densities, measurements

We use flow q and sequentially speeds, vL and vM , in Eq. 3 to compute two
different densities: ρL = q/vL and ρM = q/vM . Fig. 1 shows both densities
(ρM and ρL). The deviations from the line x=y show the differences between
the averaging methods.

The flows (Eq. 2) and densities given here are summed over the three
lanes. When the aggregation time equals 10 seconds, the density q/vS can
be much (up to fourfold) higher than the estimation q/vM . This is much
higher than the results stated by Rakha and Zhang [5]. They already stated
that the results differ per location. Since their measurements were performed
in the USA, lower speed differences between trucks and cars are expected,
and a lower variation causes a lower difference between time mean speed and
space mean speed. Besides, in Europe overtaking is allowed only at the left,
so vehicles in the left lane are faster than the right lane. Aggregation over the
lanes causes than larger variations. Finally, the number of measurements (4
weeks in our case) results in more points, and therefore more extreme points.

In Fig. 2 we plot the flow versus the density (as illustration the one-minute
data), both calculated using the time mean speed and calculated using the
space mean speed. The figures show the cloud of measured points. The red line
is fit to that cloud (the red line connecting them), according to the shape Wu
proposed [8]. Each of the measured points is assigned to one of the branches
[9]. It sometimes is unclear to which branch a point belongs, especially for the
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Relationships between Traffic Variables
Space-mean Speed

Alternately, the space-mean speeds can be approximated using spot speeds and
harmonic mean,

vs ≈
1

1
∆N

∑
i

1
vi

To derive this, we need to define a time-aggregated space-mean speed measure
to use the point sensor data since it is otherwise defined at a single snapshot.

Assume that we observe the vehicles over a length L and that the speeds taken
by vehicle i to traverse this portion are constant vi

vs =

∫
∆N(t)vs (t)dt∫

∆N(t)dt

≈
∑

i (L/vi )vi∑
i L/vi

=
1

1
∆N

∑
i

1
vi

The numerator and the denominator can also be interpreted as the total distance
and time required for passing the segment L.
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Relationships between Traffic Variables
Exercise

Show that o = lk in traffic where all vehicles have length l .

o =
1

T

∑
i

(toff
i − ton

i )

=
1

T

∑
i

l/vi

= l
∆N

T

∑
i 1/vi

∆N

= l
q

vs
= lk
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Relationships between Traffic Variables
Summary

Exact relationships

I q = kvs

I vt = 1
∆N

∑
i vi

I vs = 1
L

∑
i vi

I vt = vs + σ̂s
2

vs
, and vt ≥ vs

Approximate relationships

I si ≈ vi−1hi

I k ≈ q
vt

Ä
1 + q

vt

‘Cov(v,h)
ä−1
≈ q

vt

I vs ≈ 1
1

∆N

∑
i

1
vi
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Lecture Outline

Single-Regime Models
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Single-Regime Models
Data

In addition to the relationship q = kv , other relationships between traf-
fic variables were discovered from data. These are called Fundamental
Diagrams.

They are also referred to as equilibrium models (not to be confused with
user equilibrium).

Measurements from point sensors can be used to plot the relationships
between two traffic variables at a time.

Using simple curve-fitting methods, we can mathematically describe the
fundamental diagram.
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Single-Regime Models
Data

The following is a picture from Ni (2016) with one year of traffic data from
a city in US aggregated into 5-minute intervals.

54
Traffi

c
Flow

Theory

Figure 4.3 Observed q-k-v relationships.

The density values are calculated from the volume and speed measure-
ments.
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Single-Regime Models
Greenshields Model

One of the earliest set of traffic measurements and models was proposed
by Bruce Greenshields in 1933 using images taken from a camera.

Pedersen, N. J. (2011). 75 Years of the Fundamental Diagram for Traffic
Flow Theory. Transportation Research Circular No. E-C149 [PDF]

Lecture 2 Fundamental Diagrams
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Single-Regime Models
Greenshields Model

He proposed a simple linear relationship between density k and speed v .
This along with q = kv gives the relationships between other pairs of
variables. Why do you find so much dispersion of speeds when k ← 0?

Equilibrium
Traffi

c
Flow

M
odels

59

Figure 4.8 Fundamental diagrams implied by Greenshields model.
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Single-Regime Models
Greenshields Model

Speed and Density:

v = vf

Å
1− k

kj

ã
where vf is the free flow speed and kj is the jam density.

Flow and Density:

q = vf

Å
k − k2

kj

ã
What is the maximum flow (capacity) according to the above equation?

km =
kj

2 and qm =
vf kj

4 .

Speed and Flow:

q = kj

Å
v − v2

vf

ã
What is the speed at the maximum flow? vm = vm

2 .
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Single-Regime Models
Other Examples

In Greenshields model, vf and kj values can be obtained from the average
length of vehicles and the speed limits. This however leads to poor fit.

Alternately, these parameters can be calibrated from the data ignoring
their true meaning. Other models have also been proposed in literature to
improve resemblance to real data.

Greenberg’s Model

v = vm ln

Å
kj

k

ã
Where vm is the optimal speed that can be calibrated from data. What
are the disadvantages of this model?

Munjal-Pipes Model

v = vf

ï
1−
Å
k

kj

ãnò
For n = 1, this resembles the Greenshields model.
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Single-Regime Models
Summary

Equilibrium
Traffi

c
Flow

M
odels

61

Figure 4.9 Comparison of single-regime models.
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Lecture Outline

Multi-Regime Models
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Multi-Regime Models
Drawbacks of Single-Regime Models

The flow-density curves often tend to exhibit different behaviour in the
un-congested and congested portions.

32 4 Representation of Cross-Sectional Data

Fig. 4.9 Flow-density dia-
gram (averaged over all lanes)
for sections of the Dutch A9
(Haarlem to Amsterdam) and
the German A8-East (Munich
to the Austrian border) near
Irschenberg
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There are multiple reasons for flow-density data not to coincide with the funda-
mental diagram:

• The measurements process induces systematic errors (Sect. 3.3).
• The traffic flow is not at equilibrium.
• The traffic flow has spatial inhomogeneities or contains non-identical driver-

vehicle units.

The statements on traffic jam dynamics and driving behavior derived in the above
enumeration are exact for the fundamental diagram, only. Since each of the afore-
mentioned factors can cause significant differences between the density obtained
from Eq. (3.14) and the theoretical expectation in the fundamental diagram (it is
not unusual to see discrepancies by a factor of two), deriving statements from flow-
density data is quite error-prone. In the following examples of empirical flow-density
relations shown in the Figs. 4.9, 4.11 and 4.12 (upper left panel), the maximum traffic
density obtained by extrapolation is unrealistically small, while the front propaga-
tion velocities derived from the trend of flow-density point clouds of congested
regions are too large in magnitude (and the point clouds do not always show a clear
trend).

To estimate the effects of the errors mentioned above, we can use traffic sim-
ulations that also simulate the measurement process using virtual cross-sectional
detectors. Fig. 4.10 shows that the flow-density diagram depends strongly on the
method of averaging for obtaining the macroscopic speed and the flow (cf. Sect. 3.2),
at least at large densities. Particularly, all methods yield estimated densities that
strongly deviate from the actual density, which is, of course, available in the simula-
tion. Remarkably, plotting the flow Q against the density estimate

ρ∗ = Q∗

VH
(4.1)

Phenomena such as capacity drop and dispersion are commonly observed.
This motivates the need for using more parameters or different functions
for different regimes of the fundamental diagram.
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Multi-Regime Models
Examples

Some of these models are connected with microscopic traffic models that
we will see later in the course.

Newell’s Model:

v = vf

Å
1− exp

Å
λ

vf

Å
1

k
− 1

kj

ããã
The parameter λ is related to the speed-spacing curve.

Intelligent Driver Behaviour Model:

k =
1

(s0 + vT )
[
1−
Ä

v
vf

äδ]−1/2

where s0 represents the jam distance, T is the safe time headway, and δ
denotes the acceleration exponent.
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Multi-Regime Models
Summary

66
Traffi

c
Flow

Theory

Figure 4.11 State-of-the-art models fitted to empirical data
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Multi-Regime Models
Exercise

Plot the other fundamental diagrams associated with the following trian-
gular flow-density curve.

Density

F
lo
w

𝑞𝑚

𝑘𝑗𝑘𝑚
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Multi-Regime Models
Caution

Using space vs. time-mean speeds can have an impact on the flow-density
plots and also the calibrated fundamental diagrams.

Empirical Differences between Time Mean Speed and Space Mean Speed 5

0  50 100
0   

500 

1000

1500

2000

2500

q/<v>
T
 (veh/km/lane)

fl
ow

 (
ve

h/
h/

la
ne

)

Time Mean

 

 

0  50 100
0   

500 

1000

1500

2000

2500

q/<v>
S
 (veh/km/lane)

fl
ow

 (
ve

h/
h/

la
ne

)

Space Mean

 

 

Empirical Data
Fit on Data
Shock Wave Speed

Empirical Data
Fit on Data
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Fig. 2. (top) The fundamental diagrams constructed using time mean speed and
space mean speed

lower time intervals. This confusion causes a bad fit for the time mean speed.
The green line, the shock wave speed, will be discussed in section 3.2.

For each time period, we determine the flow that would be related to the
computed density, according to the fit parameters. The errors between these
flows and the measured flows are squared and averaged. The errors, stated in
Tab. 1, show that using the space mean speed improves the fit.

Table 1. Results of fits of the fundamental diagrams for different aggregation times

Aggregation time Error on fit Error on fit Jam Density Jam Density
time mean space mean time mean space mean

(s) ((km/h)2) ((km/h)2) (veh/km/lane) (veh/km/lane)

10 112 85 118 166
20 90 66 145 525
60 70 48 158 107
120 65 41 113 249
300 56 39 99 113
900 40 37 87 131

3.2 Consequences for macroscopic traffic models

Two different average speeds lead to two different densities, but the flows are
equal. Consequently, the speed of the propagation of traffic jams, the shock
wave speed (ω), is calculated differently, since Stokes law states:

ω =
∆q

∆ρ
(8)

The shock wave speed can also be derived directly from the measurements.
The speed of the shockwave is approximately 20 km/h. According to Eq. 8,
this speed should equal the slope of the congested branch of the fundamental
diagram. The green line in the left plots of Fig. 2 illustrates this speed; note
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Multi-Regime Models
Stochastic FD

Other extensions to stochastic fundamental diagrams also help solve issues
associated with dispersion caused due to heterogeneity in driver behaviour.68 Traffic Flow Theory
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Figure 4.12 Three-dimensional representation of the speed-density relationship.

the likelihood of having a speed in the neighborhood of 96 km/h or 60miles
per hour is very high. Figures 4.9 and 4.10 illustrate the scattering effect of
empirical observations and how deterministic models fail to capture such
an effect.

Therefore, a step forward to advance the modeling of the speed-density
relationship and hence its associated fundamental diagram is to consider
the scattering effect by representing speed as a distribution at each density
level (see Figure 4.12). Empirical observations seem to support such a
proposition. For example, in Figure 4.13 the observed mean and standard
deviation of the speed-density relationship are plotted in a single figure.
Hence, the deterministic speed-density relationship in the form

v = f (k)

may be replaced by the following one in generic form:

v = f (k,ω(k)),

where ω is a distribution parameter dependent (at least) on density k. In this
model, since speed will be a distribution at each density level, the model is
essentially a stochastic one. Readers are referred to [18–20] for attempts to
obtain stochastic speed-density relationships.

The above pairwise relationships (i.e., equilibrium models) will become
handy in the next chapter when we are setting up equations for macroscopic
modeling and later for solving the LWR model.
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Your Moment of Zen

https://youtu.be/ccM8RLLKasw
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