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Previously on Traffic Engineering

Flow or Flux: Is defined as the number of vehicles passing across a point
in a given amount of time T.

AN
=T
Headway: It is the time taken between the arrivals of the front end of
successive vehicles.
hi = t7" — 7",
Density or Concentration: It is the number of vehicles in a unit length

of the road.
_aw

L
Spacing: It is the distance between the current vehicle and its lead vehicle.

k

Si=Xi—1 = Xi
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Previously on Traffic Engineering

Speed: Speed of individual are easy to measure using mobile sensors
(Why?) Using point sensors, we can compute average of speeds across
multiple vehicles. This is called time-mean speed.

Vi = Zigﬂi :E;: Vi

Speeds of individual vehicles can also be aggregated across space to derive
space-mean speed.

Doivi
L

Vs =
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Previously on Traffic Engineering

Time- and Space-mean average speeds are usually different,
especially when traffic conditions are not homogeneous.

For example, consider a two-lane highway where each car
in the right lane has a speed 60 kmph and that on the left
lane has a speed 30 kmph.

Suppose that the vehicles are uniformly spaced and that the
flow of vehicles on both lanes is 1200 vehicles per hour.

ap @ a @
ap

What are the time- and space-mean average speeds?
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Lecture Qutline

Relationships between Traffic Variables
Single-Regime Models
Multi-Regime Models
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Relationship between Traffic Variables

Let us extend the earlier example to connect the

time-mean and space-mean speeds. @ @ @ ~
8

Imagine a scenario with multiple lanes 1,..., C each g

with uniform traffic with capacity g;, density k;, and |8 - -

speeds v;. g B

Let g = >, gi be the total flow and k = 3", k; be
the total density.

Let ; = gi/q and f/ = k;/k be the proportion of
observing a certain colour of vehicle across time and
space.

ay a» ap

g
8z

-
g

For each lane, we can write g; = k;v; since the headway is g; and spacing
is V,'/q,'.
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Relationship between Traffic Variables

Time-mean and space-mean speeds for this setting can be written as

~
I
gl
h
AN

Il
—_

S
I
gl
o
=

Il
—

Notice from the definition of the space-mean speed that

ST RS

i

»\>
»\H

Hence, we can write g = kv, for non-homogeneous traffic but the speed v
in this expression is the space-mean speed.
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Relationship between Traffic Variables

Suppose o2 represents the sample variance of the space-mean speeds

0_2

S
Vi = Vs + —
V.

c C C
qi kiV,‘2 kl ,2
W=y oy Ryt
i=1 i=1 i=1
_ XC: o (et (u = v))”
i=1 I Vs
o2
=vs + —= (Why?)
Vs

This result indicates that time-mean speeds are always greater than or
equal to space-mean speed and both are equal when traffic is homogeneous.
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Relationship between Traffic Variables

Although the previous proposition connects the two speed measures, it is
not that useful to estimate the space-mean speed from time-mean speed

since 02 is not known. We will discuss an alternate approach soon.

The example presented applies to non-homogeneous single/multi lane traf-
fic as well. We could imagine subsidary streams with different densities
although it can result in shocks as we will see later in the course.

These results by Wardrop are from the same paper that discusses user
equilibrium and system optimum assignment. This paper also includes
methods to optimally design traffic signals.
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Relationships between Traffic Variables

Recall that the following traffic variables are best obtained from spatial
Sensors:

Spacing
Density

Space-mean speed

However, spatial information is often approximated from point-sensor data
since it is easy to collect the latter.
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Relationships between Traffic Variables

The spacing between two vehicles can be approximated using the headway
and the velocity of the lead vehicle.

si = Vi_1h;

Vehicle i — 1

Space

Vehicle i

'

Note that this is an approximation since it implicitly assumes that the
velocity of the lead vehicle remains the same during h;.

Time
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Relationships between Traffic Variables

Recall that density k is related to average spacing s. Hence,
k= °T AN Z viihi

The above expression can be directly used to find the approximate density. We
can also connect it with the volume in the following way

1 1 1
; = sziflh,' ~ szih,‘

Suppose that v and h indices the vector of speed and headway measurements
and Cov is the sample covariance of these

ANl_ 1 Z(w — (i~ h)
~ AN Z )(hi — h)
= M Z V,'h,' — Vth

Cov(v,h) =
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Relationships between Traffic Variables

Equating 45 >_; vih; in the above equations,
1 —
= veh + cov(v, h)
=2 1 Cov(v,h)
q
Rewriting, the above expression and multiplying and dividing by v%'
V —_— _1
k = (i + Cov(v, h))
q

-1
-9 (1 + iCov(v7 h))
Vi

Vit

In light traffic, the speeds are usually independent of headways. However,
as speeds tend to zero, headways tend to be larger and the inverse portion
would be > 1.
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Relationships between Traffic Variables

Thus, if we used v; instead of v in estimating density, we would underes-

timate 1t.
Computed densities, 10s Computed densities, 120s
250 250
200 o 200
T s
8 €
=
E 150 - 150
5 =
= = " x
= 100 4= 10 M
7 &
= 50|
50,
0
o 0 50 100 150 200
0 200 q/<v>L (veh/km/lane)

50 100 150
g/<v> (vehvkmilane)
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Relationships between Traffic Variables

Alternately, the space-mean speeds can be approximated using spot speeds and
harmonic mean,

Vs R 1
s~ 1
iy
To derive this, we need to define a time-aggregated space-mean speed measure
to use the point sensor data since it is otherwise defined at a single snapshot.

Assume that we observe the vehicles over a length L and that the speeds taken
by vehicle i to traverse this portion are constant v;
J AN(t)vs(t)dt
T [AN(t)dt
~ SiL/vi)vi
diL/vi
1

AN D

The numerator and the denominator can also be interpreted as the total distance
and time required for passing the segment L.
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Relationships between Traffic Variables

Show that o = /k in traffic where all vehicles have length /.

0= ("~ 1)
= %Z//V,

_ /MZ/l/Vi
T AN

19— i

Vs
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Relationships between Traffic Variables

Exact relationships

q:sz

Vi = ﬁ doivi

Vs = % Z,‘ Vi

Ve = Vs + ‘T‘jz and v; > vg
Approximate relationships

si ~ vi_1h;

— —1
k~ 2 (14 2Cov(v,h) =~ 2
Vs R

L L
N i v
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Lecture Qutline

Single-Regime Models
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Single-Regime Models

In addition to the relationship g = kv, other relationships between traf-
fic variables were discovered from data. These are called Fundamental
Diagrams.

They are also referred to as equilibrium models (not to be confused with
user equilibrium).

Measurements from point sensors can be used to plot the relationships
between two traffic variables at a time.

Using simple curve-fitting methods, we can mathematically describe the
fundamental diagram.
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Single-Regime Models

The following is a picture from Ni (2016) with one year of traffic data from
a city in US aggregated into 5-minute intervals.
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The density values are calculated from the volume and speed measure-
ments.
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Single-Regime Models

One of the earliest set of traffic measurements and models was proposed
by Bruce Greenshields in 1933 using images taken from a camera.

Pedersen, N. J. (2011). 75 Years of the Fundamental Diagram for Traffic
Flow Theory. Transportation Research Circular No. E-C149
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http://onlinepubs.trb.org/onlinepubs/circulars/ec149.pdf

Single-Regime Models

He proposed a simple linear relationship between density k and speed v.
This along with ¢ = kv gives the relationships between other pairs of
variables. Why do you find so much dispersion of speeds when k + 07

Speed vs density Speed vs flow
1.
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Single-Regime Models

Speed and Density:

k
V:Vf(l‘ﬂ
J

where v is the free flow speed and k; is the jam density.

k2)
= k——
q Vf( K

What is the maximum flow (capacity) according to the above equation?
k; vrk;
km = = and qm = .

Flow and Density:

Speed and Flow:

V2
q G\V v

What is the speed at the maximum flow? v, = 2.
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Single-Regime Models

In Greenshields model, v¢ and k; values can be obtained from the average
length of vehicles and the speed limits. This however leads to poor fit.

Alternately, these parameters can be calibrated from the data ignoring
their true meaning. Other models have also been proposed in literature to
improve resemblance to real data.

_ kj)
vam|n<k

Where v,, is the optimal speed that can be calibrated from data. What
are the disadvantages of this model?

()]

For n = 1, this resembles the Greenshields model.

Greenberg’s Model

Munjal-Pipes Model
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Summary

Speed vs density Speed vs flow
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Lecture Qutline

Multi-Regime Models
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Multi-Regime Models

The flow-density curves often tend to exhibit different behaviour in the
un-congested and congested portions.

3000
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Phenomena such as capacity drop and dispersion are commonly observed.
This motivates the need for using more parameters or different functions
for different regimes of the fundamental diagram.
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Multi-Regime Models

Some of these models are connected with microscopic traffic models that
we will see later in the course.

V= (17exp (v% (ié)))

The parameter ) is related to the speed-spacing curve.

Newell’s Model:

Intelligent Driver Behaviour Model:

1
(so+vT) [1- (2)’]

k:

—1/2

where sy represents the jam distance, T is the safe time headway, and ¢
denotes the acceleration exponent.
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Summary

Speed vs density Speed vs flow
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Exercise

Plot the other fundamental diagrams associated with the following trian-

gular flow-density curve.

Flow

v

ki Density
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Multi-Regime Models

Using space vs. time-mean speeds can have an impact on the flow-density
plots and also the calibrated fundamental diagrams.
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Multi-Regime Models

Other extensions to stochastic fundamental diagrams also help solve issues
associated with dispersion caused due to heterogeneity in driver behaviour.

Vehicle speed v, kph

Probability density

Traffic density &, \'p{{
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https://youtu.be/ccM8RLLKasw
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https://youtu.be/ccM8RLLKasw

