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Previously on Traffic Engineering

PMF of a Poisson distributed random variable with parameter A > 0 is
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Previously on Traffic Engineering

Suppose X ~ exp(A), its probability density function is defined as

de™™  if x>0
fx(x) = { -

0 otherwise

Suppose X ~ exp(}), its CDF is

Fx(x)=1—e ™

Check if dFx(x)/dx = fx(x)
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Previously on Traffic Engineering

PDF and CDF of an exponentially distributed random variable with A = 2
are shown below.
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If X ~ exp()), then E(X) = 1/X and V(X) = 1/)\?
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Previously on Traffic Engineering

Let us now analyze a special case where the arrival process is a Poisson
process with rate A and the service times are exponential with rate p. The
fraction p = A/ is called the traffic intensity.
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Can you write the global balance equations and find the steady state prob-
abilities?
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Previously on Traffic Engineering

Thus, the steady state probabilities are
po=1-p

pi=p'(1-p)
How do we find the expected length of the queue?

B(L) =3 jp =Y il (1-p) =1
j=0 j=0

We can also find the expected waiting time by defining new random vari-
ables and taking their expectations.

How are E(L) and E(T) related? E(L) = AE(T). This is called Little's
law and holds in more general settings.
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Lecture Qutline
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Gap Acceptance

Unlike signalized intersections which give define the right-of-way, drivers
in navigating an unsignalized intersection must look for safe opportunities
or gaps to enter the conflict area.

Additionally, traffic streams could have a hierarchy. Vehicles which have
lower priority have to yeild to the ones with a higher priority (imagine a
major arterial intersecting a minor road).

Typically, intersections on the minor street may have stop signs. This is
called a two-way stop controlled (TWSC) junction. Alternately, if stops
signs are present on all approaches, we call it an all-way stop controlled
(AWSC) junction.

Of course, in this part of the world, all of these are just roads :)
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https://youtu.be/UIthEM6pDqw

Gap Acceptance

Usual questions of interest include:
What gaps/headways (measured in time) are acceptable to drivers?
What is the frequency with which these gaps occur?

How many drivers will be able to depart within a given gap
duration?

What is the capacity of an unsignalized intersection?

Can we quantify the performance of an unsignalized intersection
using level of service measures?
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Gap Acceptance

The minimum gap that traffic in a minor stream accepts is called the
critical gap and is denoted by t..

Note, we will use gap and headways interchangeably for this part of the
course. So these are time elapsed between arrivals of the front ends or rear
ends of consecutive vehicles at a point sensor.

When the gap in the major stream is longer than the critical gap, minor
stream vehicles (if queued) enter at headways known as follow-up time t.
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Gap Acceptance

In reality, drivers need to be consistent or homogeneous. That is they can
accept one gap at one junction and reject it at another.

Also, different drivers have different thresholds for gap acceptance. Hence,
distributions of these parameters are typically used.

Estimating t. and tr is critical to understanding the performance of the
junction. These may depend on several factors such as the speed of major
stream traffic and difficulty of maneuvers (going straight vs. turning).

While measuring follow-up time is straightforward (why?), measuring crit-
ical gap is difficult since we can only measure the largest gap rejected and
the accepted gap.

Two approaches are commonly used—regression and maximum likelihood.
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Gap Acceptance

Using real-world data, one can plot the gap size vs. number of drivers who
accept that gap.
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(Brilon and Gros smann 1991).
The slope is tr and if the x-intercept is ty, then the critical gap is (Why?)
te = to + tr/2
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Gap Acceptance

In the maximum likelihood approach, the critical gap is assumed to be log-
normal and we assume that for each user the following data is available:

a; logarithm of accepted gap of driver i (oo if no gap was accepted)

r; logarithm of the largest gap rejected by driver i (0 if no gap was
rejected)

The goal is to find estimates of the parameters of the log-normal distribu-
tion p and o2.

Is the log-normal distribution a good choice? Isn’t it common to assume
that the gaps are exponentially distributed?
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Gap Acceptance

Suppose f and F represent the pdf and cumulative distribution function
of the associated normal distribution, write the log-likelihood function and

maximize it.
n
L£=1n (H F(ai) — )
i=1
= In( )
i=1
Using dF(X) = —f(x) and aa%(ﬁ) = —%54f(x), set the gradient of LL to

zero and solve for pand o.

The expected critical gap is
E(t.) = exp(p + 0.502)
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Gap Acceptance

Headways on the major street are usually assumed exponentially distributed.
Suppose there were 456 vehicles passed through a junction in 1 h, what is
the expected number of headways greater than 5 s?

If instead there were 1440 vehicles, what is expected number of headways
less than 0.1 s?

The exponential distribution does a good job for low traffic but can over-
estimate short headways. Hence, two other distributions are commonly
used—shifted exponential and bunched exponential.

16/35



Gap Acceptance

The shifted or displaced exponential guarantees a minimum headway t,,
by defining the complementary CDF in the following way:

P(h> x) = exp(—p(x — tm)), if x> tn
- otherwise

)

What is the mean of this random variable?
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Gap Acceptance

Often, traffic appears in platoons. To model such streams, the bunched
exponential distribution could be used

P(h > ) O[eXp(*M(X - tm))v if x Z tm
X) =
1, otherwise

For this distribution, the minimum headway t,, is maintained with probabil-
ity 1—« and with «, the distribution takes the form of a shifted exponential
distribution.

This results in platoons that are t,, apart with exponential gaps between
the bunches. What is the probability that there are n vehicles in a platoon?

These are geometrically distribution with pmf
P(N=n)=(1-0a)"'a

What is the average number of vehicles in the platoon? 18/35



Lecture Qutline
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Interaction of Two Streams

Consider a simple intersection with two one-way streams

Non-priority

L Conflict
area
/

Priority

—
stream

stream -~
Suppose the average volume in the priority J _
and non-priority streams be g, and g, re- %

spectively. o

Let f(t) be the pdf of gaps in the major

stream and let g(t) be the number of ve- ~
hicles from the minor stream that can enter g
the major stream with a gap of t. ?

The capacity of the major stream traffic can be written as '
o0
an=a, | &()f(0)de
0
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Interaction of Two Streams

The function f(t) can either take the form of exponential, shifted or
bunched exponential. For estimating g(t), we could use the knowledge
of t. and tr like the regression plots described earlier.

0 if t <ty
t p—
&(t) {t;“ otherwise

where tg = t. — ¥
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Interaction of Two Streams

We could also use the expected value of g treating the number of vehicles
entering a gap of duration t as a random variable.

g(t) = npa(t)

where p,(t) is the probability that n minor stream vehicles enter a gap of
duration t.

For the step-function discussed in the regression model, p can be written
as

1 ift —Dtr <t<t t
,Dn(t): i c+.(n )f_ < tc + ntr
0 otherwise
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Interaction of Two Streams

These two approaches yield the following formulate for capacity of the
minor stream assuming the major approach headways are exponential.

_exp(—gptc)
R
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Other equations in the above figure relax the assumptions of constant tr
and t. and exponential headways.
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Interaction of Two Streams

Another line of approach is to use a queuing model to estimate capacity
and delays.

For example the Pollaczek-Khinchine formula can be used for the M/G/1
queue with Poisson arrivals and general service distribution (gap accep-
tance process).

P2 + N2 Var(S)

L=p+
’ 2(1-p)

Var(S) is the variance of the service time S. Little's law can be used to
get the waiting time or the delay W = L/\. Capacity is the inverse of the
service time.
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Lecture Qutline
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Capacity and Level of Service

The Indo-HCM provides a procedure for estimating the capacity of minor
approaches and LoS for unsignalized intersections with 3 or 4 approaches.

The approaches used for data collection either have 2 or 4 lanes.

Unlike the earlier example, an unsignalized intersection can have several
minor movements which squeeze through gaps of major movements.
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Movement Priority

Table 8.2: Priority Ranks for Different Movements

—— l

Figure 8.8 (a): Vehicular Movements ata
'ypical Three-Legged intersection
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Unsignalized Intersections
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Capacity and Level of Service

As usual, we convert flows into PCUs. The conflicting volume calculations
depend on the priority of the movements.

For two-lane major streets,
Ve1i=15w+vs + v7

Vc,4 = ]..5V2 + v3 + vio

28/35



Capacity and Level of Service

Conflicting Flow (per hour)
Rank Movement
Two lane major street Four lane major street
V2
1 V:i - —
Vs
Ve
2 v, 15v + v + v, A
v, 15V, + v+ vy v,
3 v Vyt VgtV H Y v, + Vg + v, +0.5v,
Vio V, VRV, RV v, +V,+v, +0.5v,
4 Vg Vy+ Vg +V +V, + V5 + V), V, VgV VW + Vy,
Vi Vi+Va+V+ Vg + Vg +Vy ViV +V HV
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Capacity and Level of Service

Vehicle Type
Two- Auto Standard | Bi TAT
Movement Wheeler | rickshaw Car Cag‘ LCV | Bus MA’I{
Four lane divided intersection
Right turning from major to minor street 2.5 2.7 2.7 29 | 33|36 | 38
Right turning from minor to major street 35 37 38 41 | 49 | 55| 57
Through traffic on minor 5.8 5.9 6.8 76 | 79 | 79 | 86
Two lane undivided intersection

Right turning from major to minor street 29 32 35 39 - - -
Right turning from minor to major street 3.2 35 3.8 - - - -
Through traffic on minor 35 4.2 49 - - - -
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Capacity and Level of Service

These critical gaps are adjusted based on the vehicle composition (partic-

ularly, taking large vehicles into account).

te x

= tc pase + frv In(Prv)

Vehicle Type
Movement Two- Auto | Standard | Big | o | B | TAT/
Wheeler | rickshaw Car Car MAT
Four lane divided intersection
Right turning from major to minor street 0.25 0.27 0.46 0.55 | 0.48 [ 0.53 | 0.74
Right turning from minor to major street 0.61 0.64 0.88 0.93 | 0.86 | 0.84 | 0.85
Through traffic on minor 0.34 0.38 0.58 045 0.44 | 044 | 0.27
Two-lane undivided intersection
Right turning from major to minor street 0.38 0.63 0.78 1.02 - -
Right turning from minor to major street 0.07 0.07 0.01 - -
Through Traffic on minor 0.07 0.07 0.07 - -
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Capacity and Level of Service

e~Vex(tex=b)/3600

Cy=aXx Ve, 1o Vextix/3600

Where,

C, = capacity of movement X’ (in PCU/h),
V., = conflicting flow rate corresponding to movement x (PCU/h),
t., = critical gap of standard passenger cars for movement X’ (s),

t;, = follow-up time for movement X’ (s), and
‘a’and ‘b’ = adjustment factors based on intersection geometry.

Major Street | Adjustment Subject Movement
Configuration | Factors | Right Turn from Major | Right Turn from Minor | Through on Minor
Four-lane a 0.80 1.00 0.90
divided b 1.30 2.16 5.04
Two-lane a 0.70 0.80 1.10
undivided b -0.11 0.72 0.72
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Capacity and Level of Service

Level of Service

Volume-Capacity ratio

A

<0.15

0.16 - 0.35

0.36 - 0.55

0.56 - 0.80

0.81-1.00

mm|O|o|w

>1.00
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Additional Reading

Troutbeck, R.J., & Brilon, W. (1997). Unsignalized Intersection Theory.
FHWA Report.
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HIGHWAY ENGINEER PRANKS:

THE INESCAPABLE CLOVERLEAF:

THE ZERO-CHOICE INTERCHANGE:

THE ROTARY SUPERCOLLIDER:

Lecture 18

Unsignalized Intersections
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