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Previously on Traffic Engineering

Definition

PMF of a Poisson distributed random variable with parameter λ > 0 is

P(X = x) = pX (x) =
e−λλx

x!

Claim

Suppose X ∼ Pois(λ), E(X ) = V (X ) = λ
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Previously on Traffic Engineering

Definition

Suppose X ∼ exp(λ), its probability density function is defined as

fX (x) =

{
λe−λx if x ≥ 0

0 otherwise

Claim

Suppose X ∼ exp(λ), its CDF is

FX (x) = 1− e−λx

Check if dFX (x)/dx = fX (x)
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Previously on Traffic Engineering

PDF and CDF of an exponentially distributed random variable with λ = 2
are shown below.
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Claim

If X ∼ exp(λ), then E(X ) = 1/λ and V (X ) = 1/λ2
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Previously on Traffic Engineering

Let us now analyze a special case where the arrival process is a Poisson
process with rate λ and the service times are exponential with rate µ. The
fraction ρ = λ/µ is called the traffic intensity.
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Can you write the global balance equations and find the steady state prob-
abilities?
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Previously on Traffic Engineering

Thus, the steady state probabilities are

p0 = 1− ρ

pi = ρi (1− ρ)

How do we find the expected length of the queue?

E(L) =
∞∑
j=0

jpj =
∞∑
j=0

jρj(1− ρ) =
ρ

1− ρ

We can also find the expected waiting time by defining new random vari-
ables and taking their expectations.

E(T ) =
1

µ− λ

How are E(L) and E(T ) related? E(L) = λE(T ). This is called Little’s
law and holds in more general settings.
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Lecture Outline

1 Gap Acceptance

2 Interaction of Two Streams

3 Capacity and Level of Service
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Lecture Outline

Gap Acceptance
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Gap Acceptance
Introduction

Unlike signalized intersections which give define the right-of-way, drivers
in navigating an unsignalized intersection must look for safe opportunities
or gaps to enter the conflict area.

Additionally, traffic streams could have a hierarchy. Vehicles which have
lower priority have to yeild to the ones with a higher priority (imagine a
major arterial intersecting a minor road).

Typically, intersections on the minor street may have stop signs. This is
called a two-way stop controlled (TWSC) junction. Alternately, if stops
signs are present on all approaches, we call it an all-way stop controlled
(AWSC) junction.

Of course, in this part of the world, all of these are just roads :)

https://youtu.be/UIthEM6pDqw
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Gap Acceptance
Introduction

Usual questions of interest include:

I What gaps/headways (measured in time) are acceptable to drivers?

I What is the frequency with which these gaps occur?

I How many drivers will be able to depart within a given gap
duration?

I What is the capacity of an unsignalized intersection?

I Can we quantify the performance of an unsignalized intersection
using level of service measures?
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Gap Acceptance
Critical Gap and Follow-up Time

The minimum gap that traffic in a minor stream accepts is called the
critical gap and is denoted by tc .

Note, we will use gap and headways interchangeably for this part of the
course. So these are time elapsed between arrivals of the front ends or rear
ends of consecutive vehicles at a point sensor.

When the gap in the major stream is longer than the critical gap, minor
stream vehicles (if queued) enter at headways known as follow-up time tf .
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Gap Acceptance
Critical Gap and Follow-up Time

In reality, drivers need to be consistent or homogeneous. That is they can
accept one gap at one junction and reject it at another.

Also, different drivers have different thresholds for gap acceptance. Hence,
distributions of these parameters are typically used.

Estimating tc and tf is critical to understanding the performance of the
junction. These may depend on several factors such as the speed of major
stream traffic and difficulty of maneuvers (going straight vs. turning).

While measuring follow-up time is straightforward (why?), measuring crit-
ical gap is difficult since we can only measure the largest gap rejected and
the accepted gap.

Two approaches are commonly used—regression and maximum likelihood.
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Gap Acceptance
Regression Model

Using real-world data, one can plot the gap size vs. number of drivers who
accept that gap.

tf

8.  UNSIGNALIZED INTERSECTION THEORY

8 - 3

a maneuver is, the longer are the critical gap and follow-up time distribution of follow-up times and the critical gap distribution
parameters.  There has also been a suggestion that drivers independently. Each group is discussed below.
require a different critical gap when crossing different streams
within the one maneuver.  For instance a turn movement across
a number of different streams may require a driver having a
different critical gap or time period between vehicles in each
stream (Fisk 1989).  This is seen as a unnecessary complication
given the other variables to be considered.

8.2.2 Estimation of the Critical
Gap Parameters

The two critical gap parameters that need to be estimated are the
critical gap t  and the follow-up time .  The techniques used toc

estimate these parameters fit into essentially two different
groups. The first group of techniques are based on a regression
analysis of the  number  of  drivers  that  accept  a  gap  against
the  gap  size.    The  other  group  of  techniques  estimates  the

Regression techniques.
If there is a continuous queue on the minor street, then the
technique proposed by Siegloch (1973) produces acceptable
results because the output matches the assumptions used in a
critical gap analysis.  For this technique, the queue must have at
least one vehicle in it over the observation period.  The process
is then:

� Record the size of each gap, t, and the number of
vehicles, n, that enter during this gap;

� For each of the gaps that were accepted by only n
drivers, calculate the average gap size, E(t) (See Figure
8.1);

� Use linear regression on the average gap size values
(as the dependent variable) against the number of
vehicles that enter during this average gap size, n; and

Data Used to E valuate Critical Gap s and Move-Up T imes 
(Brilon  and Gros smann  1991).

tc 
 to� tf /2

8.  UNSIGNALIZED INTERSECTION THEORY

8 - 4

(8.1)

� Given the slope is t  and the intercept of the gap sizef

axis is t , then the critical gap t  is given by  o c

The regression line is very similar to the stepped line as shown
in Figure 8.2.  The stepped line reflects the assumptions made by
Tanner (1962), Harders (1976), Troutbeck (1986), and others.
The sloped line reflects the assumptions made by Siegloch
(1973), and McDonald and Armitage (1978).

Independent assessment of the critical gap and follow-up time
If the minor stream does not continuously queue, then the
regression approach cannot be used.  A probabilistic approach
must be used instead.

The follow-up time is the mean headway between queued
vehicles which move through the intersection during the longer
gaps in the major stream.  Consider the example of two major
stream vehicles passing by an unsignalized intersection at times
2.0 and 42.0 seconds.  If there is a queue of say 20 vehicles
wishing to make a right turn from the side street,  and  if  17  of

these minor street vehicles depart at 3.99, 6.22, 8.29, 11.13,
13.14, and so on, then the headways between the minor street
vehicles are 6.22-3.99, 8.29-6.22, 11.13-8.29 and so on.  The
average  headway  between  this  group  of  minor stream
vehicles is 2.33 sec.  This process is repeated for a number of
larger major stream gaps and an overall average headway
between the queued minor stream vehicles is estimated.  This
average headway is the follow-up time, t .  If a minor streamf  

vehicle was not in a queue then the preceding headway would
not be included.  This quantity is similar to the saturation
headway at signalized intersections.

The estimation of the critical gap is more difficult.  There have
been numerous techniques proposed (Miller 1972; Ramsey and
Routledge 1973; Troutbeck 1975; Hewitt 1983; Hewitt 1985).
The difficulty with the estimation of the critical gap is that it
cannot be directly measured.  All that is known is that a driver's
individual critical gap is greater than the largest gap rejected and
shorter than the accepted gap for that driver.  If the accepted gap
was shorter than the largest rejected gap then the driver is
considered to be inattentive.  This data is changed to a value just
below the accepted gap.  Miller (1972) gives an alternative
method of handling this inconsistent data which uses the data as
recorded.  The difference in outcomes is generally marginal.

Figure 8.2
Regression Line Types.

The slope is tf and if the x-intercept is t0, then the critical gap is (Why?)

tc = t0 + tf /2
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Gap Acceptance
Maximum Likelihood Approach

In the maximum likelihood approach, the critical gap is assumed to be log-
normal and we assume that for each user the following data is available:

I ai logarithm of accepted gap of driver i (∞ if no gap was accepted)

I ri logarithm of the largest gap rejected by driver i (0 if no gap was
rejected)

The goal is to find estimates of the parameters of the log-normal distribu-
tion µ and σ2.

Is the log-normal distribution a good choice? Isn’t it common to assume
that the gaps are exponentially distributed?

Lecture 18 Unsignalized Intersections



15/35

Gap Acceptance
Maximum Likelihood Approach

Suppose f and F represent the pdf and cumulative distribution function
of the associated normal distribution, write the log-likelihood function and
maximize it.

LL = ln

(
n∏

i=1

F (ai )− F (ri )

)

=
n∑

i=1

ln (F (ai )− F (ri ))

Using ∂F (x)
∂µ = −f (x) and ∂F (x)

∂σ2 = − x−µ
2σ2 f (x), set the gradient of LL to

zero and solve for µ and σ.

The expected critical gap is

E(tc) = exp(µ+ 0.5σ2)
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Gap Acceptance
Headway Distributions

Headways on the major street are usually assumed exponentially distributed.
Suppose there were 456 vehicles passed through a junction in 1 h, what is
the expected number of headways greater than 5 s?

If instead there were 1440 vehicles, what is expected number of headways
less than 0.1 s?

The exponential distribution does a good job for low traffic but can over-
estimate short headways. Hence, two other distributions are commonly
used—shifted exponential and bunched exponential.
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Gap Acceptance
Headway Distributions

The shifted or displaced exponential guarantees a minimum headway tm
by defining the complementary CDF in the following way:

P(h > x) =

{
exp(−µ(x − tm)), if x ≥ tm

1, otherwise

What is the mean of this random variable?
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Gap Acceptance
Headway Distributions

Often, traffic appears in platoons. To model such streams, the bunched
exponential distribution could be used

P(h > x) =

{
α exp(−µ(x − tm)), if x ≥ tm

1, otherwise

For this distribution, the minimum headway tm is maintained with probabil-
ity 1−α and with α, the distribution takes the form of a shifted exponential
distribution.

This results in platoons that are tm apart with exponential gaps between
the bunches. What is the probability that there are n vehicles in a platoon?

These are geometrically distribution with pmf

P(N = n) = (1− α)n−1α

What is the average number of vehicles in the platoon?
Lecture 18 Unsignalized Intersections
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Lecture Outline

Interaction of Two Streams

Lecture 18 Unsignalized Intersections



20/35

Interaction of Two Streams
Introduction

Consider a simple intersection with two one-way streams

Suppose the average volume in the priority
and non-priority streams be qp and qn, re-
spectively.

Let f (t) be the pdf of gaps in the major
stream and let g(t) be the number of ve-
hicles from the minor stream that can enter
the major stream with a gap of t.

g(t) 
 M
�

n
0
n#pn(t)

pn(t) 

1 for tc�(n	1)#tf�t<tc�n#tf
0 elsewhere

g(t) 


0 for t < t0
t	t0

tf
for t � t0

8.  UNSIGNALIZED INTERSECTION THEORY

8 - 13

(8.30)

(8.31)

Figure 8.7
Illustration of the Basic Queuing System.

Within assumption (a), we have to distinguish between two
different formulations for the term g(t).  These are the reason for
two different families of capacity equations.  The first family
assumes a stepwise constant function for g(t) (Figure 8.2):

where,
p (t)= probability that  n  minor streamn

vehicles enter a gap in the major stream
of duration t,

The second family of capacity equations assumes a continuous
linear function for g(t) . This is an approach which has first been
used by Siegloch (1973) and later also by McDonald and
Armitage (1978).

The capacity of the major stream traffic can be written as

qm = qp

∫ ∞
0

g(t)f (t)dt
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Interaction of Two Streams
Capacity

The function f (t) can either take the form of exponential, shifted or
bunched exponential. For estimating g(t), we could use the knowledge
of tc and tf like the regression plots described earlier.

g(t) =

{
0 if t < t0
t−t0
tf

otherwise

where t0 = tc − tf
2

Lecture 18 Unsignalized Intersections
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Interaction of Two Streams
Capacity

We could also use the expected value of g treating the number of vehicles
entering a gap of duration t as a random variable.

g(t) =
∞∑
n=1

npn(t)

where pn(t) is the probability that n minor stream vehicles enter a gap of
duration t.

For the step-function discussed in the regression model, p can be written
as

pn(t) =

{
1 if tc + (n − 1)tf ≤ t < tc + ntf

0 otherwise

Lecture 18 Unsignalized Intersections
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Interaction of Two Streams
Capacity

These two approaches yield the following formulate for capacity of the
minor stream assuming the major approach headways are exponential.

qm = qp
exp(−qptc)

1− exp(−qptf )

qm =
1

tf
exp(−qptc)

qm 
 qp
e
	qp#tc

1	e
	qp#t f

qm 


1
tf

e
	qp#tc

tf

8.  UNSIGNALIZED INTERSECTION THEORY
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(8.32)

(8.33)

If we combine Equations 8.29 and 8.31 we get Siegloch's (1973)
formula,

These formulae result in a relation of capacity versus conflicting
flow illustrated by the curves shown in Figure 8.8.

The idealized assumptions, mentioned above as (a), (b), (c),
however, are not realistic. Therefore, different attempts to drop
one or the other assumption have been made.  Siegloch (1973)
studied different types of gap distributions for the priority stream
(cf. Figure 8.9) based on analytical methods.  Similar studies
have also been performed by Catchpole and Plank (1986) and
Troutbeck (1986).  Grossmann (1991) investigated these effects
by simulations.  These studies showed

� If the constant t  and  values are replaced by realisticc

distributions (cf. Grossmann 1988) we get a decrease
in capacity.

� Drivers may be inconsistent; i.e. one driver can have
different critical gaps at different times; A driver might
reject a gap that he may otherwise find acceptable. This
effect results in an increase of capacity.

� If the exponential distribution of major stream gaps is
replaced by more realistic headway distributions, we
get an increase in capacity of about the same order of
magnitude as the effect of using a distribution for t  andc

t  values (Grossmann 1991 and Troutbeck 1986).f

� Many unsignalized intersections have complicated
driver behavior patterns, and there is often little to be
gained from using a distribution for the variables t  andc

t  or complicated headway distributions.  Moreover,f

Grossmann could show by simulation techniques that
these effects compensate each other so that the simple
capacity equations, 8.32 and 8.33, also give quite
realistic results in practice.

Note: Comparison of capacities for different types of headway distributions in the main street traffic flow for t = 6 seconds andc 

t = 3 seconds.  For this example, t  has been set to 2 seconds.f m

Figure 8.9
Comparison of Capacities for Different Types of 

Headway Distributions in the Main Street Traffic Flow.

qm 


�qpe
	�(tc	tm)

1	e
	�t f

� 

�qf

(1	tmqf )

qm 
 (1	qp#tm)#
qp#e

	qp#
(tc	tm

)

1	e
	qp#tf

qm 


�#qp#e
	�(t0	tm)

�#tf

qm 


(1	qptm)#e
	�(t0	tm)

tf

qp� tm

8.  UNSIGNALIZED INTERSECTION THEORY
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(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

More general solutions have been obtained by replacing the  equation:
exponential headway distribution used in assumption (b) with a
more realistic one e. g. a dichotomized distribution (cf. Section
8.3.3).  This more general equation is:

where

This equation is illustrated in Figure 8.10.  This is also similar
to equations reported by Tanner (1967), Gipps (1982),
Troutbeck (1986), Cowan (1987), and others.  If � is set to 1
and t  to 0, then Harders' equation is obtained.  If � is set tom

l– , then this equation reduces to Tanner's (1962) This was proposed by Jacobs (1979) .

If the linear relationship for g(t) according to Equation 8.37 is
used, then the associated capacity equation is

or

Figure 8.10
The Effect of Changing �� in Equation 8.31 and Tanner's Equation 8.36.Other equations in the above figure relax the assumptions of constant tf

and tc and exponential headways.
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Interaction of Two Streams
Queuing Model

Another line of approach is to use a queuing model to estimate capacity
and delays.

For example the Pollaczek-Khinchine formula can be used for the M/G/1
queue with Poisson arrivals and general service distribution (gap accep-
tance process).

L = ρ+
ρ2 + λ2Var(S)

2(1− ρ)

Var(S) is the variance of the service time S . Little’s law can be used to
get the waiting time or the delay W = L/λ. Capacity is the inverse of the
service time.
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Lecture Outline

Capacity and Level of Service

Lecture 18 Unsignalized Intersections



26/35

Capacity and Level of Service
Indo-HCM

The Indo-HCM provides a procedure for estimating the capacity of minor
approaches and LoS for unsignalized intersections with 3 or 4 approaches.

The approaches used for data collection either have 2 or 4 lanes.

Unlike the earlier example, an unsignalized intersection can have several
minor movements which squeeze through gaps of major movements.
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Capacity and Level of Service
Movement Priority
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Capacity and Level of Service
Calculating Conflicting Volume

As usual, we convert flows into PCUs. The conflicting volume calculations
depend on the priority of the movements.

For two-lane major streets,

Vc,1 = 1.5v5 + v6 + v7

Vc,4 = 1.5v2 + v3 + v10
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Capacity and Level of Service
Calculating Conflicting Volume
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Capacity and Level of Service
Base Critical Gap
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Capacity and Level of Service
Adjusted Critical Gap

These critical gaps are adjusted based on the vehicle composition (partic-
ularly, taking large vehicles into account).

tc,x = tc,base + fLV ln(PLV )
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Capacity and Level of Service
Capacity Calculation
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Capacity and Level of Service
Level of Service
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Additional Reading

Troutbeck, R.J., & Brilon, W. (1997). Unsignalized Intersection Theory.
FHWA Report.
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Your Moment of Zen
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