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Previously on Traffic Engineering

We can easily analyze delays at a junction in the case of deterministic
arrivals and departures. This is an example of D/D/1 queues. More
general settings will be discussed later in the course.

Suppose the arrival rate of vehicles at an approach be v and saturation
flow rate be s. If the cycle time is C ,

I The number of vehicles arriving at the junction in one cycle is vC .

I The maximum number of vehicles that can leave is sg , where g is
the effective green.
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Previously on Traffic Engineering

Suppose sg > vC . Calculate the following quantities:

254     Chapter 7     Traffic Control and Analysis at Signalized Intersections 

7.5.1 15B15B15B15B15B15B15B17B17B17B17BSignalized Intersection Analysis with D/D/1 Queuing 
The assumption of D/D/1 queuing (as discussed in Chapter 5) provides a strong 
intuitive appeal that helps in understanding the analytical fundamentals underlying 
traffic analysis at signalized intersections. To begin applying D/D/1 queuing to 
signalized intersections, we consider the case where the approach capacity exceeds 
the approach arrivals. Under these conditions, and the assumption of uniform arrivals 
throughout the cycle and uniform departures during green, a D/D/1 queuing system 
as shown in Fig. 7.13 will result. 

Note that this chapter will use the variables v (for arrival rate) and s (for 
departure/saturation flow rate),  rather than the variables λ and μ used in Chapter 5, 
as these variables are more commonly used in signalized intersection analyses. 

The “Arrivals v×t” line gives the total number of vehicle arrivals at time t, and 
the “Departures s×t” line gives the slope of vehicle departures (number of vehicles 
that depart) during the effective greens. Note that the per-cycle approach arrivals will 
be vC and the corresponding approach capacity (maximum departures) per cycle will 
be sg. Figure 7.13 is predicated on the assumption that sg exceeds vC for all cycles 
(no queues exist at the beginning or end of a cycle). 

 

Figure 7.13  D/D/1 signalized intersection 
queuing with approach capacity (sg)  
exceeding arrivals (vC) for all cycles. 
 

 
v = arrival rate, typically in veh/s, r = effective red time in seconds,  
s = departure rate, typically in veh/s, g = effective green time in seconds, and 
t = elapsed time since a reference time, typically 

the start of green or red, in seconds, 
 C = cycle length in seconds. 

tc = time from the start of the effective green until 
queue clearance in seconds,  

    

 
Given the properties of D/D/1 queues presented in Chapter 5, a number of 

general equations can be derived by simple inspection of Fig. 7.13: 

I The time to clear the queues
after the start of the effective
green.

tc =
vr

s − v

I The proportion of the cycle
time with a queue.

tc =
r + tc
C

I Total vehicle delay per cycle and average delay per vehicle.

Dt =
vr2

2(1− v/s)
Davg =

0.5C (1− g/C )2

1− (v/c)(g/C )
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Previously on Traffic Engineering

The earlier examples makes a few implicit assumptions.

I Arrival rates are uniform, which is not always true. Vehicles at
isolated intersection usually follow a random arrival process. If the
signal is part of a coordinated network, then arrivals are in batches
or platoons.

I The queues are assumed to stack vehicles on top of one another.
This is also called a point-queue model.

Also, in practice traffic can switch between under-saturated and over-
saturated conditions. To address this issue, the delay is usually broken
down into uniform delay and overflow delay.
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Previously on Traffic Engineering
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Lecture Outline

1 Review of Probability Distributions

2 Continuous Time Markov Chains

3 Single Server Queues

4 Multiple Servers and Network of Queues
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Lecture Outline

Review of Probability Distributions
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Review of Probability Distributions
Poisson Distribution

The Possion random variable is used to count the number of random events
in a time period.

For example,

I The number of accidents that occur on a highway in an year.

I The number of customers served by a teller at a bank.

It is assumed that occurrences of events are independent of each other.
Also, we assume that two or more events cannot happen simultaneously.
Further, the average rate of occurrence of events is known and assumed
constant.
https://www.randomservices.org/random/apps/PoissonExperiment.

html
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Review of Probability Distributions
Poisson Distribution

Definition

PMF of a Poisson distributed random variable with parameter λ > 0 is

P(X = x) = pX (x) =
e−λλx

x!

Claim

Suppose X ∼ Pois(λ), E(X ) = V (X ) = λ

Lecture 17 Introduction to Queueing Theory



10/33

Review of Probability Distributions
Exponential Distribution

Exponential distribution is commonly used to model time between consec-
utive events when the events occur according to Poisson distribution.

For example,

I The time duration between two accidents on a highway

I The amount of time taken by a bank teller to serve a customer

I The time between two arrivals at a checkout queue
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Exponential Distribution
Probability Density Function

Definition

Suppose X ∼ exp(λ), its probability density function is defined as

fX (x) =

{
λe−λx if x ≥ 0

0 otherwise

Claim

Suppose X ∼ exp(λ), its CDF is

FX (x) = 1− e−λx

Check if dFX (x)/dx = fX (x)
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Exponential Distribution
PMF and CDF

PDF and CDF of an exponentially distributed random variable with λ = 2
are shown below.
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Claim

If X ∼ exp(λ), then E(X ) = 1/λ and V (X ) = 1/λ2
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Exponential Distribution
Connections with Poisson Distribution

To see why inter-arrival times of an Poisson distributed random variable is
exponentially distributed, let X ∼ Pois(λ).

Consider a time window t. The probability that there are zero arrivals in
t is given by

P(X = 0) =
(λt)0e−λt

0!
= e−λt

If Y is the inter-arrival time, then P(X = 0) = P(Y > t).

Hence, P(Y ≤ t) = 1−e−λt , which is the CDF of the exponential random
variable.
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Exponential Distribution
Memoryless property

Suppose that the inter-arrival times of buses at a bus stop are exponentially
distributed with rate λ. Let X be the arrival time of the next bus.

Assuming, that you have been waiting for t minutes (right after the passing
of the previous bus), what is the probability that you will have to wait at
least another s minutes.

P(X > s + t|X > t) =?

For this reason, exponential random variable is said to exhibit a memory-
less property.
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Lecture Outline

Continuous Time Markov Chains
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Continuous Time Markov Chains
Discrete-Time Markov Chains

Definition (Markov Property)

A stochastic process {Xn, n ≥ 0} with a countable state space S is called
a DTMC if ∀ n ≥ 0, i , j ∈ S ,

P
[
Xn+1 = j |Xn = i ,Xn−1,Xn−1, . . . ,X0

]
= P

[
Xn+1 = j |Xn = i

]
Definition (Time Homogeneity)

A DTMC {Xn, n ≥ 0} is said to be time homogeneous if ∀ n ≥ 0, i , j ∈ S ,

P
[
Xn+1 = j |Xn = i

]
= pij

i.e., RHS does not depend on n or pij(n) = pij ∀ n ≥ 0
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Continuous Time Markov Chains
Discrete-Time Markov Chains

The probability with which the system moves from i to j , pij , is called the
transition probability and the matrix of pij values is called the one-step
transition probability matrix.

P =
[
pij
]
|S|×|S|

Note that P can have countably infinite rows and columns.

Definition (Stochastic Matrix)

A square matrix P =
[
pij
]
|S|×|S| is called right stochastic if

1 pij ≥ 0 ∀ i , j ∈ S

2
∑

j∈S pij = 1∀ i ∈ S

Transition matrices of a Markov chain are right stochastic matrices.
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Continuous Time Markov Chains
Discrete-Time Markov Chains

The transition probability matrix can also be visualized as a directed graph
in which the states are nodes and an arc (i , j) exists only if pij > 0.

P =

1 2 3[ ]1 0.1 0.2 0.7
2 0.6 0 0.4
3 0.4 0 0.6

1

2

3

0.1

0.6

0.4

0.7

0.6

0.2

0.4

http://setosa.io/ev/markov-chains/

The P matrix alone doesn’t fully describe a DTMC. We’d also need to
know the initial distribution.

ai = P
[
X0 = i

]
∀ i ∈ S

Let a be row vector of ai ’s. A Markov chain can thus be fully specified

using (S ,P, a).
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Continuous Time Markov Chains
Definition

Definition (CTMC)

Suppose {X (t), t ≥ 0} is a continuous time stochastic process with a
countable state space S = {0, 1, . . .}. Then X (.) is a CTMC if the
transition probabilities have the following Markov property

P[X (s + t) = j |X (r) : 0 ≤ r ≤ s] = P[X (s + t) = j |X (s)]

We can think of transitions in CTMCs in two steps. Imagine that the
system spends an exponential amount of time in each state and when it
transitions, it does like a DTMC.

Instead of dealing with a transition matrix, we define a rate matrix whose

(i , j)th element indicates the product of the rate at which we leave state i

and the probability of transitioning to j .
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Continuous Time Markov Chains
Example

Consider a two-state CTMC with the following transition rates. Imagine
that it represents a machine replacement problem.

0 1

𝜆

𝜇

The rate matrix is written as

[
−λ λ
µ −µ

]
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Continuous Time Markov Chains
Example

One metric of interest is the steady state probability pj that the system is
in state j .

Definition (Fundamental Theorem of CTMC)

Let {X (t), t ≥ 0} be an irreducible CTMC. The steady state probabilities
are a solution to the following equations

pQ = 0∑
j∈S

pj = 1

These are also called global balance equations as they can be written as
the rate out = rate in for every state.

Find the steady state probabilities for the machine reliability example.
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Lecture Outline

Single Server Queues
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Single Server Queues
Queuing Theory

Queuing Theory involves studying quantities such as queue lengths and
waiting times in a single queue or a network of queues. Application areas
include:

I Checkout lines, ATMs

I Call centers

I Traffic signals and Toll plazas

I Airports

I Communication and Internet

I Manufacturing
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Single Server Queues
Queuing Theory

Consider a single queue with an arrival process A(t) and departure process
D(t).

The horizontal and vertical cross-sections tell us the amount of time spent
in the queue and the queue length.

The area represents the overall time spent by everyone in the queue.
(Source:Willig (1999) A Short Introduction to Queuing Theory)
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Single Server Queues
Poisson Arrivals and Exponential Service Times

Let us now analyze a special case where the arrival process is a Poisson
process with rate λ and the service times are exponential with rate µ. The
fraction ρ = λ/µ is called the traffic intensity.

2 31

𝜆

0

𝜆 𝜆 𝜆

𝜇 𝜇 𝜇 𝜇

Can you write the global balance equations and find the steady state prob-
abilities?
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Single Server Queues
Poisson Arrivals and Exponential Service Times

Thus, the steady state probabilities are

p0 = 1− ρ

pi = ρi (1− ρ)

How do we find the expected length of the queue?

E(L) =
∞∑
j=0

jpj =
∞∑
j=0

jρj(1− ρ) =
ρ

1− ρ

We can also find the expected waiting time by defining new random vari-
ables and taking their expectations.

E(T ) =
1

µ− λ

How are E(L) and E(T ) related? E(L) = λE(T ). This is called Little’s
law and holds in more general settings.
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Lecture Outline

Multiple Servers and Network of Queues
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Multiple Servers and Network of Queues
Kendall Notation

The example that we discussed so far is referred to as M/M/1 queues. In
general, the assumptions used in modelling a queue are represented using
Kendall’s notation

A/S/c/K

I A Arrival process

I S Service time distribution

I c Number of servers

I K Capacity of the queue

M indicates Markovian or memoryless and is used to indicate Poisson pro-
cesses and exponential service times.Other options include D for determin-
istic and G for general distribution.
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Multiple Servers and Network of Queues
Queue Discipline

Additionally, we may also specify the service discipline.

I FIFO

I LIFO

I Random Service

I Round Robin

I Priority Order
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Multiple Servers and Network of Queues
M/M/2 queue

Imagine a single queue but two servers with difference service rates.

Systems like these can also be analysed using CTMCs
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Multiple Servers and Network of Queues
M/M/2 queue

2, 𝐹𝐹 3, 𝐹𝐹1, 𝐹𝐹

𝜆 𝜆 𝜆 𝜆

𝜇1 + 𝜇2 𝜇1 + 𝜇2 𝜇1 + 𝜇2

0, 𝐸𝐸

0, 𝐹𝐸

0, 𝐹𝐹

0, 𝐸𝐹

𝜆 𝜆

𝜆

𝜇2 𝜇1

𝜇1 𝜇2

𝜇1 + 𝜇2

The expressions are relatively simpler when the service rates are the same.
For an M/M/c queue, let ρ = λ

cµ , then p0 is[(
c−1∑
k=0

(cp)k

k!
+

(cp)c

c!

1

1− p

)]−1
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Multiple Servers and Network of Queues
Network of Queues

For a network of queues, we have to resort to simulation. Software pack-
ages such as Anylogic, Arena can be used for this purpose.

https://www.supositorio.com/rcalc/rcalclite.htm

Lecture 17 Introduction to Queueing Theory

https://www.supositorio.com/rcalc/rcalclite.htm


33/33

Your Moment of Zen
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