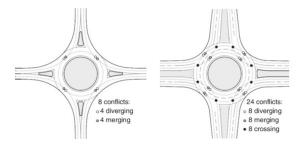

CE 269 Traffic Engineering

Lecture 16 Roundabouts and Simulators

Roundabouts and Simulators

Previously on Traffic Engineering

Consider the following 4-way junction. For the unsignalized version, there are 8 merge and 8 diverge conflicts and 16 crossing conflicts.


These reduce the capacity and also make navigating through the junction less safe.

Lecture 16	Roundabouts and Simulators

2 Simulators for Intersections

Introduction

Roundabouts/rotaries/traffic circles are alternate to traffic signals and can reduce crossing conflicts.

Several studies have found that roundabouts have more capacity than using four-way stops or signals. Since they have fewer conflicts, they tend to be safer as well.

https://youtu.be/BvNO8LWVfAg

Advantages and Disadvantages

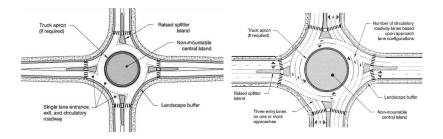
Advantages:

- Complete stops are avoided. This can improve air quality.
- ► Signals or traffic police aren't needed. Operational costs are lower.
- Intersections with more than four approaches can also be effectively handled using roundabouts.

The Arc de Triomphe roundabout with 12 approaches https://youtu.be/FXfGZF2-sUU

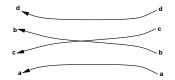
Lecture 16

Roundabouts and Simulators

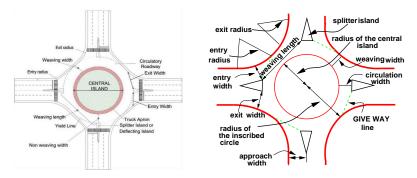

6/21

Advantages and Disadvantages

Disadvantages:

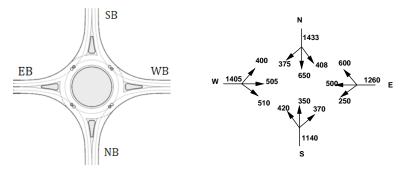

- Not ideal for high volume conditions.
- Vehicles slow down significantly when navigating through a roundabout which can increase the overall delay.
- Requires users to be familiar with the layout.
- Require more real estate.
- Pedestrians have to cross streets searching for gaps.

Types



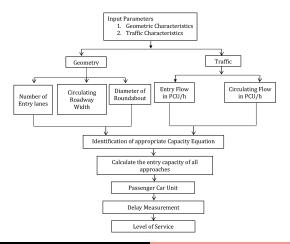
Geometric Design

In a roundabout, drivers exhibit merge and diverge actions which is referred to as weaving.



Geometric Design

The capacity of a roundabout depends on the above geometric design elements as well as the circulating flow. As the circulating flow increases, the capacity decreases and delay increases. Flow Parameters


Consider a four-way roundabout. Let Q_{e1}, \ldots, Q_{e4} be the approach volumes or entry flows and Q_{c1}, \ldots, Q_{c4} be the circulating volume.

Calculate the circulating flow for the traffic going EB in the above example.

Capacity and LoS

LoS calculations are based on delay which is the sum total of geometric delay (caused due to speed reduction) and queuing delay (required for weaving)

Lecture 16

Roundabouts and Simulators

12/21

Gaps

Critical Gap: Critical gap is defined as the minimum headway in the circulating flow when an entering vehicle can safely enter a roundabout, assuming all entering drivers are consistent and homogeneous.

Follow-up Time: Follow-up time is defined as the time span between two queued vehicles entering the circulating stream in the same gap. If more than one vehicle from minor stream uses a gap then the succeeding vehicles are referred to as follow-ups.

How do these change with increase in the diameter of a roundabout?

Inputs

The HCM formulae were derived for roundabouts with diameter in the range 20-70 m and with two lane approaches. The following input parameters are required for estimating capacity and LoS.

Parameter		Description	Remarks	
	1.	Diameter of the Roundabout in m		
Geometric	2. Number of Approach Lanes			
Characteristics	3. Approach Width <i>in m</i>		Field measurements	
Characteristics	4.	Number of Circulating Lanes		
	5. Circulating Roadway width <i>in m</i>			
	1.	Entry Flow in veh/h (Q_e)	Video Extraction	
	2.	Circulating Flow in veh/h (Q_c)	video Extraction	
Traffic Characteristics	3.	Passenger Car Units (PCU)	Conversion of traffic flow	
	4. Entry Flow in PCU/h (Q_{e})		to PCU	
	5.	Circulating Flow in PCU/h (Q_c)	10 PC0	
Driver Behaviour	1.	Critical Gap, T _c (sec)	Computed	
	2.	Follow-Up Time, T _f (sec)	Computed	

PCUs and Gaps

Flows are first converted to PCUs using the following factors.

Diameter Motorized Traffic							Non-Motorized Traffic			
(in m)	Two- Wheeler	Autos	Small Cars	Big Cars	LCVs	Heavy Vehicles	Cycle	Cycle Rickshaw	ADV	
$20 < D \le 30$	0.32 0	2 0.83	1.00	1.40	1.88	3.65	0.18	1.12	4.0	
$30 < D \leq 40$					1.65	3.45	0.21	1.31		
40 < D ≤50					1.53	3.20	0.25	1.56		
50 < D ≤70					1.46	3.05	0.28	1.74		

Critical gap and follow-up time can be read off from this table.

Diameter, D (m)	Critical Gap(sec)	Follow-up Time (sec)
20 < D ≤30	2.00	1.50
$30 < D \le 40$	1.90	1.40
40 < D ≤50	1.65	1.25
$50 < D \le 70$	1.60	1.20

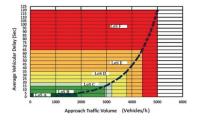
Capacity

Let T_f and T_c be the follow-up time in seconds Q_c be the circulating flow in PCU/hr.

The capacity of an approach of a roundabout is given by

$$C = Ae^{-BQ_c}$$

where $A = 3600/T_f$ and $B = (T_c - 0.5T_f)/3600$


The overall capacity of the roundabout is derived by combining the approach capacities with observed flows in other approaches.

Level of Service

The total delay can be estimated using

$$y = 0.8e^{0.001x}$$

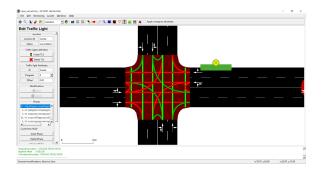
where y is the vehicular delay in seconds and x is the total approach traffic in veh/hr (not PCU/hr)

LOS	Average Delay 'd' per Vehicle (Sec)
А	<u>≤</u> 5
В	6 ≤ d <u>≤</u> 15
С	16 ≤ d ≤ 20
D	21 ≤ d ≤ 35
Е	36 ≤ d <u>≤</u> 65
F	> 65

Example

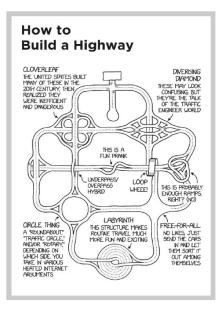
Estimate the Capacity and LoS of a roundabout with diameter 66 m with 2 lanes in each approach with the following flows.

	Entry Flow (in Vehicles/h)								
Total		Small Cars	Big Cars	Light Commercial Vehicles	Heavy Vehicles	Two Wheelers	Three Wheelers		
Arm 1 (Q_{ei})	1641	762	283	5	35	423	133		
Arm 2 (Q _{e2})	418	174	56	10	15	128	35		
Arm 3 (Q _{e3})	1570	837	145	15	47	359	167		
Arm 4 (Q _{e4})	788	361	142	20	27	181	57		
Total	4417								


Circulating Flow (in Vehicles/h)

Total		Small Cars	Big Cars	Light Commercial Vehicle	Heavy Vehicles	Two Wheelers	Three Wheelers
Circulating Section1(Q _{ct})	754	279	162	12	25	198	78
Circulating Section2(Q _{c2})	1767	978	235	10	37	380	127
Circulating Section3(Q _{c3})	349	137	87	8	17	57	43
Circulating Section4(Q _{ct})	1457	647	162	10	47	510	81
Total	4327						

Simulators for Intersections


Simulators for Intersections SUMO

Create a signalized intersection in SUMO and assign demands for different turn movements.

Tweak the phasing scheme and estimate the average delays of all vehicles.

Your Moment of Zen

21/21