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Previously on Traffic Engineering

At xj , one cannot accommodate more vehicles than what is sent from
upstream, the capacity, and what can be received downstream.Simplified Theory of Kinematic Waves 159
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Figure 10.5 The minimum principle.

10.5 MINIMUM PRINCIPLE

Intuitively, the minimum principle means that any point on a roadway
xj cannot admit more vehicles than arrive from an upstream location
Nup(t, xj), which is allowed by local capacity NQ(t, xj), and which the
downstream location is able to receive Ndn(t, xj). Graphically, this involves
superimposing the above three curves on a single graph, and the cumulative
flow that actually passes xj, N(t, xj) is the lower envelope of the three (see
Figure 10.5):

N(t, xj) = min{Nup(t, xj),N
Q(t, xj),N

dn(t, xj)}.

10.6 SINGLE BOTTLENECK

In Figure 10.5, if there is an on-ramp at xj, the location slightly downstream
(to the right of xj), x

+
j , may be a bottleneck since both traffic streams

from the upstream mainline and the on-ramp meet here. To keep track
of arrival and departure flows, cumulative flow N(t, x) will be replaced by
two notations:
• cumulative arrival flow A(t, x), which denotes cumulative flow having

arrived at location x by time t waiting to pass x, and
• cumulative departure flow D(t, x), which denotes cumulative flow

having departed location x by time t.

Hence, the cumulative count is the lowest of all the three conditions

N(t, xj) = min
{
Nup(t, xk),NQ(t, xj),N

dn(t, xj)
}
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Previously on Traffic Engineering

For the case of the triangular fundamental diagram, we have only two
characteristics to deal with and the correct cumulative count is obtained
from the most restrictive initial/boundary conditions.

Case I: If f ′ = wf , q = kwf and hence

N(t, x) = N(tU , xU)

That is, we trace the same vehicle as we move along the characteristics.

Case II: If f ′ = wb, k + q/wb = kj , and hence

N(t, x) = N(tC , xC ) + (q + kwb)(t − tC )

= N(tC , xC ) + kjw(t − tC )

= N(tC , xC ) + kj(xC − x)

In this case, the cumulative count increases at the rate of the jam density.
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Previously on Traffic Engineering

Thus, for any (t, x),

N(t, x) = min
{
N(tU , xU),N(tC , xC ) + kj(xC − x)

}
Instead of tracking the cumulative counts, we could draw characteristics
and work with densities.

But as we will see shortly, shock waves can make this procedure difficult.
This approach on the other hand can be applied oblivious to the existence
of shock waves.
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Numerical Methods
Introduction

The LWR model PDE ∂k
∂t + ∂f (k)

∂x = 0 can be approximated using Lax
Friedrich-type finite difference method in the following way

k(t + ∆t, x) − k(t, x)

∆t
+

f (k(t, x + ∆x)) − f (k(t, x − ∆x))

2∆x
= 0

Time

Sp
ac
e

(𝑡 + Δ𝑡, 𝑥)

(𝑡, 𝑥 − Δ𝑥)

(𝑡, 𝑥 + Δ𝑥)

(𝑡, 𝑥)

There are other efficient ways to approximate the PDE, which will be

discussed now.
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Numerical Methods
Going Forward

So far, we have just understood what happens to traffic on a single link.

Given, ICs or BCs, one can predict the density, volume, and speed (which
can then be processed to find the travel times on the link if we enter it at
different times).

We will see how solutions from one link can be used as boundary conditions
to others and we can scale this method at a network level. (Imagine space-
time plots for each link which are all linked together.) This step is referred
to as network loading.
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Numerical Methods
Extending LWR to a Network

The model that we saw in the last lecture gives us the density at different
points in space and time (which can also be used to estimate the the
cumulative count values).

Time

Sp
ac
e

(𝑡 + Δ𝑡, 𝑥)

(𝑡, 𝑥 − Δ𝑥)

(𝑡, 𝑥 + Δ𝑥)

(𝑡, 𝑥)

The cumulative counts determine the flow into or out of the link in each

time interval, i.e., y(t) = N(t, x) − N(t + ∆t, x) as shown.
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Numerical Methods
Extending LWR to a Network

It is important to note that the flow between boundaries are interlinked due
to the network structure. For example, consider the following instance.

Time

Sp
ac
e

Time
Sp
ac
e

𝑦(𝑡)

In general, both conditions downstream and upstream can affect traffic at

a location.
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Numerical Methods
Sending and Receiving Flows

The sending flow or demand out of a link in time interval [t, t + ∆t]
denoted as S(t) is defined as the flow that can leave the link if the down-
stream end is connected to a reservoir of infinite capacity.

What factors influence sending flows?

I Capacity of the link

I Density of vehicles currently on the link (we may have an
uncongested scenario)

𝑞

𝑘
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Numerical Methods
Sending and Receiving Flows

Likewise, the receiving flow or suppy into of a link in time interval [t, t +
∆t] denoted as R(t) is defined as the flow that can enter the link if the
upstream end is connected to a reservoir of infinite capacity.

What factors influence receiving flows?

I Capacity of the link

I Density of vehicles currently on the link (we may have an congested
scenario which prohibits vehicles from entering)

𝑞

𝑘
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Numerical Methods
Links in Series

Consider the simplest scenarios when we have two links in series.

𝑖ℎ 𝑗

𝑦ℎ𝑖𝑗(𝑡)

The flow that goes from (h, i) to (i , j) is

yhij(t) = min

{
Shi (t),Rij(t)

}

We will ignore t to keep the notation simple, but remember that all these

terms vary over time.
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Lecture Outline
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Cell Transmission Model
Finite-Difference Approximation

The road space is assumed to be divided into smaller cells and we track
the density in each cell and the flows between adjacent cells. (Godunov
Scheme)

This method is also called the Cell Transmission Model (CTM). There are
other similar models such as the Link Transmission Model (LTM).

The cells in CTM must be carefully chosen. For a given time step ∆t, we
set the size of the cell to be the equal to the distance a vehicle will travel
in free flow conditions, i.e., ∆x = vf ∆t. This assumption has a couple of
advantages:

I Vehicles cannot skip cells in one time step. They can only move
from one cell to the next in one time step.

I A condition called Courant-Friedrich-Lewy (CFL) is satisfied which
guarantees that this method is a stable solution to the PDE.
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Cell Transmission Model
Notation

The variables used in CTM are:

I yij(t): Denotes the flow from cell i to cell j in [t, t + ∆t] ≡ [t, t + 1].

I ni (t): Number of vehicles in cell i at time t

I Ni : Maximum number of vehicles that can fit in cell i .

𝑛ℎ(𝑡) 𝑛𝑖(𝑡) 𝑛𝑗(𝑡)
𝑦ℎ𝑖(𝑡) 𝑦𝑖𝑗(𝑡)

𝐶𝑒𝑙𝑙 ℎ 𝐶𝑒𝑙𝑙 𝑖 𝐶𝑒𝑙𝑙 𝑗

Conservation of flow requires

ni (t + 1) = ni (t) + yhi (t) − yij(t)
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Cell Transmission Model
Fundamental Diagram

A trapeziodal fundamental diagram is usually used in CTM

𝑣𝑓

𝑤

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘)

𝐹
𝑙𝑜
𝑤
(𝑞
)

𝑞𝑚𝑎𝑥
vf is the free-flow
speed, w is the back-
ward wave velocity,
and qmax is the ca-
pacity of the link.

Just as the triangular fundamental diagram, this can be mathematically
represented as

q = min

{
vf k , qmax , (kj − k)w

}
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Cell Transmission Model
Fundamental Diagram

q = min

{
vf k, qmax , (kj − k)w

}
Multiply both sides of the equation with ∆t

q∆t = min

{
vf k∆t, qmax∆t, (kj∆t − k∆t)w

}
The equivalent formula in terms of y and n variables is given by

yij(t) = min

{
ni (t), qmax∆t,

(
Nj − nj(t)

)
w

vf

}
Can you explain this expression in words? The number of vehicles which move
from cell i to cell j is limited by the

I Existing number of vehicles ni (t)

I Flow at capacity qmax∆t

I Available space in the downstream cell j . Remember this is congested, so
the velocity is lower and hence the factor w/vf .
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Cell Transmission Model
Sending and Receiving Flows

Remember that these iterates give us the flow between cells on a link.

𝑛1(𝑡) 𝑛2(𝑡) 𝑛3(𝑡)
𝑦12(𝑡) 𝑦23(𝑡)

𝐴 𝐵

𝑛4(𝑡) 𝑛5(𝑡)
𝑦34(𝑡) 𝑦45(𝑡)

In fact, one can think of cells as miniature links in series and notice that the
sending and receiving flow expressions are captured in what we derived.

yij(t) = min

{
ni (t), qmax∆t,

(
Nj − nj(t)

)
w

vf

}

yij(t) = min

{
min

{
ni (t), qmax∆t

}
,min

{
qmax∆t,

(
Nj − nj(t)

)
w

vf

}}
The first minimum is the sending flow of cell i and the second minimum is the

receiving flow of cell j .
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Cell Transmission Model
Sending and Receiving Flows

The sending and receiving flows are calculated for the last and the first cells of
the link

𝑛1(𝑡) 𝑛2(𝑡) 𝑛3(𝑡)
𝑦12(𝑡) 𝑦23(𝑡)

𝐴 𝐵

𝑛4(𝑡) 𝑛5(𝑡)
𝑦34(𝑡) 𝑦45(𝑡)

For instance, the sending flow of link (A, B) is calculated from cell 5.

SAB(t) = min

{
n5(t), qmax∆t

}
RAB(t) = min

{
qmax∆t,

(
N1 − n1(t)

)
w

vf

}
Using the S and R expressions and the network topology, we update the flows
across cells in the next link.

All cell occupancies n and flows y at time step t are updated with values from

time step t − 1 and so on.
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Lecture Outline

Example
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Example
Three Cell Link

Consider a link with three cells. Suppose that time is divided into 1 second
intervals.

I At most 10 vehicles can move from one cell to the next cell in one time
step, i.e., qmax∆t = 10.

I The maximum number of vehicles that can fit a cell Ni = 30.

I w/vf = 2/3

I The demand for vehicles trying to enter the link is known d(t).

Now also assume that at the downstream end, a traffic light is red from t = 0

to t = 9 and will turn green forever at t = 10. Use the spreadsheet provided to

calculate cell occupancies over time.
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Additional Reading

Daganzo, C. F. (1994). The cell transmission model: A
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the hydrodynamic theory. Transportation Research Part

B: Methodological, 28(4), 269-287.

Daganzo, C. F. (1995). The cell transmission model,

part II: network traffic. Transportation Research Part B:

Methodological, 29(2), 79-93.
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Your Moment of Zen

From Daganzo’s 1984 paper on ‘The length of tours in zones of
different shapes’:
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