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Previously on Mathematics for Engineers

Definition (Expectation)

The expected value of a random variable X is denoted by E(X ) or µX

and is defined as

E(X ) =

∫
x∈RX

xfX (x)dx

Definition (Variance)

The variance of a random variable X is denoted by V (X ), Var(X ), or σ2
X

and is defined as

V (X ) = E
(
(X − µX )2

)
=

∫
x∈RX

(x − µX )2fX (x)dx
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Previously on Mathematics for Engineers

The idea of conditional probability of events can be extended similarly to
random variables to define conditional random variables and their PMFs
and PDFs.

For example, in the discrete setting, we can define the PMF of a conditional
random variable as pX |Y (x |y) as

pX |Y (x |y) =
P(X = x ,Y = y)

P(Y = y)

That is, we are conditioning X with events associated with Y = y .

Likewise, in the continuous setting, we can write

fX |Y (x |y) =
P(X ∈ [x , x + dx ],Y ∈ [y , y + dy ])

P(Y ∈ [y , y + dy ])
=

fX ,Y (x , y)

fY (y)
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Lecture Outline
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Lecture Outline

The Problem
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The Problem
Necktie Paradox

Two men (say A and B) are each gifted a necktie by their wives. They do
not know how much each of their neckties cost. They decide to bet on
who has the cheaper necktie.

They agree to consult their wives and find out the cost of the neckties.
If say A has the more expensive neck tie, he has to give it to B and vice
versa.

Each of them reason as follows: One could win or loose with equal prob-
ability. If I loose, I loose an amount equal to the cost of my necktie. If I
win, I will get more than the cost of my necktie.

In expectation, I gain to participate in the bet. But then, by the same
logic, the other man also gains from the bet!
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Lecture Outline

Conditional Expectation
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Conditional Expectation
Introduction

For the conditionally distributed random variables discussed in previous
class, we can extend the idea of expectation. For the discrete case,

E(X |Y = y) =
∑

xP(X = x |Y = y) =
∑

xpX |Y (x |y)

For the continuous case,

E(X |Y = y) =

∫
xP(X ∈ [x , x+dx ]

∣∣Y ∈ [y , y+dy ])dx =

∫
xfX |Y (x |y)dx

Lecture 8 Beyond Expectations



9/28

Conditional Expectation
Example

Imagine a biased coin whose probability of heads is not known and assumed
to be a random variable with uniform distribution on [0, 1]. Suppose, the
coin is tossed n times and let X be the number of heads observed. What
is the expected number of heads?

Let Y be the random variable that indicates the probability of heads. Given
a realization of Y , we can calculate the expected number of heads using
Binomial distribution.

E(X |Y = y) = ny

Thus, conditional expectation is a function of the random variable
Y . Since, functions of random variables are random variables, E(X |Y ) is
a random variable! In this example, E(X |Y ) = nY . So, EY (E(X |Y )) =
nEY (Y ) = n/2
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Conditional Expectation
Random Variable

Think of the symbol E(X |Y ) as g(Y ) and E(X |Y = y) as g(y) and recall
that E(g(Y )) =

∑
y g(y)pY (y) or E(g(Y )) =

∫
y
g(y)fY (y)dy .

Thus, the expectation of conditional expectation for the discrete case is

E(E(X |Y )) =
∑
y

E(X |Y = y)pY (y)

One can write EY (E(X |Y )) instead of E(E(X |Y )) for additional emphasis.

For the continuous case,

E(E(X |Y )) =

∫
y

E(X |Y = y)fY (y)dy

Note: For the continuous case, E(X |Y = y) can be interpreted as E(X |Y ∈
[y , y + dy ]).
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Conditional Expectation
Law of Iterated Expectations

Claim

E(E(X |Y )) = E(X )

Proof.

For discrete random variables,

E(E(X |Y )) =
∑
y

E(X |Y = y)pY (y)

=
∑
y

∑
x

xP(X = x |Y = y)P(Y = y)

=
∑
y

∑
x

xP(X = x ,Y = y)

=
∑
x

∑
y

xP(X = x ,Y = y)

=
∑
x

x
∑
y

P(X = x ,Y = y) =
∑
x

xpX (x)

�
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Conditional Expectation
Law of Iterated Expectations

This result is called the law of iterated expectations, law of total expectation, or
the tower rule.

The event-version of the tower rule can also be defined. If A1,A2, . . . ,An is a
partition of the sample space, then

E(X ) =
n∑

i=1

E(X |Ai )P(Ai )
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Lecture Outline

Moment Generating Functions
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Moment Generating Functions
Introduction

Moment generating functions is an alternate way of characterizing distri-
butions of random variables instead of the PDF and CDFs.

Several results in probability can be derived relatively easily using gener-
ating functions, particularly those involving expected values and sums of
random variables.
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Moment Generating Functions
Introduction

Definition

The moment generating function (MGF) of a random variable X is
denoted by MX (t) and is defined as

MX (t) = E(etX )

By definition of expectation, we can also write the moment generating
function as

MX (t) =
∑

etxpX (x)

or for the continuous case

MX (t) =

∫
etx fX (x)dx
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Moment Generating Functions
Introduction

For a random variable X , the nth order moment is defined as E(X n).
Hence, the mean is the first-order moment.

The moment generating function gets its name from a property which
allows us to derive the higher order moments of random variables by dif-
ferentiating it multiple times.
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Moment Generating Functions
Skewness and Kurtosis

Standardized higher-order moments have some special features. For in-
stance, the Skewness of a random variable is defined as

γ = E

((
X − µ
σ

)3
)

The sign of skewness tells us if it is left-skewed (see left figure) or right-
skewed (see right figure). What can you say about the skewness of normal,
exponential, lognormal distributions?
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Moment Generating Functions
Skewness and Kurtosis

The standardized-fourth moment is called Kurtosis and reflects the shape
of the tails of the PDF of a random variable.

k = E

((
X − µ
σ

)4
)
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Moment Generating Functions
Derivatives

Using the expansion of exponential functions,

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .

and linearity of expectation operator,

MX (t) = E(etX ) = 1 + tE(X ) +
t2E(X 2)

2!
+ . . .

Using the above expansion, find d3

dt3MX (t) at t = 0.

Generalizing this, the nth derivative of the moment generating function
evaluated at t = 0 gives the nth-order moment.
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Moment Generating Functions
Common Distributions

Derive the moment generating functions for the following distribution:

I Poisson distribution eλ(e
t−1)

I Uniform distribution ebt−eat
t(b−a)

I Standard normal distribution et
2/2

I Normal distribution eµt+σ
2t2/2

Compute the first and second derivatives of MGFs.
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Moment Generating Functions
Sums of Independent Random Variables

Consider the problem of adding the random variables that we discussed in
the last class.

Suppose X and Y are two independent random variables with moment
generating functions MX (t) and MY (t). What is the moment generating
function of Z = X + Y ?

MZ (t) = E
(
et(X+Y )

)
=

∫ ∫
et(x+y)f (x , y)dydx

=

∫ ∫
etx f (x)ety f (y)dydx

=

∫
etx f (x)dx

∫
ety f (y)dy

= E
(
etX
)
E
(
etY
)

= MX (t)MY (t)
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Moment Generating Functions
Sums of Independent Random Variables

We can thus use this result to identify if the resulting random variable has
the same distribution. Check the results from last class for

I Poisson distribution

I Uniform distribution

I Standard normal distribution

Note that just as expectation, the MGF may not always exist.

Lecture 8 Beyond Expectations



23/28

Lecture Outline

Probability Inequalities
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Probability Inequalities
Markov Inequality

Many applications and proofs require finding bounds on the probabilities. Let us
discuss a few popular inequalities.

Claim (Markov’s Inequality)

Let X be non-negative and assume E(X ) is finite. For any t > 0,

P(X > t) ≤ E(X )

t

Proof.

E(X ) =

∫ ∞
0

xf (x)dx =

∫ t

0

xf (x)dx +

∫ ∞
t

xf (x)dx

≥
∫ ∞
t

xf (x)dx ≥
∫ ∞
t

tf (x)dx

= t

∫ ∞
t

f (x)dx = tP(X ≥ t)

�
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Probability Inequalities
Chebyshevs inequality

Claim (Chebyshev’s Inequality)

Let X be a random variable with finite µ and σ2. For any t > 0,

P
(
|X − µ| ≥ t

)
≤ σ2

t2

Proof.

Using Markov’ inequality

P
(
|X − µ| ≥ t

)
= P

(
|X − µ|2 ≥ t2

)
≤

E
(
(X − µ)2

)
t2

=
σ2

t2

�

In addition, if Z = X−µ
σ

,

P
(
|Z | ≥ t

)
≤ 1

t2
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Lecture Outline

A Solution
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A Solution
Necktie Paradox

From mindyourdecisions.com,

Resolution 3: never bet a gift from your wife

Of course, it should be clear the game is not really a zero-sum game but
a negative sum game.

Upon learning the bet, and that their husbands would wager their thought-
ful gifts, both wives will be angry. Clearly, there will be no winners, and the
only safe bet is to avoid this game entirely. Consider yourself forewarned.
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Your Moment of Zen
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