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Previously on Mathematics for Engineers

Definition (Probability Density Function)

The probability density function (PDF) of a continuous random variable
is denoted as fX (x) and is defined as

fX (x)dx = P
(
X ∈ [x , x + dx ]

)
Thus, the probability that the random variable lies in a subset S is given
by

P(X ∈ S) =

∫
x∈S

fX (x)dx

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
denoted by FX (x) and is defined as

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (x)dx
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Previously on Mathematics for Engineers

Definition (Expectation)

The expected value of a random variable X is denoted by E(X ) or µX

and is defined as

E(X ) =

∫
x∈RX

xfX (x)dx

Definition (Variance)

The variance of a random variable X is denoted by V (X ), Var(X ), or σ2
X

and is defined as

V (X ) = E
(
(X − µX )2

)
=

∫
x∈RX

(x − µX )2fX (x)dx
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Previously on Mathematics for Engineers

Definition

If X and Y are two random variables, the joint PDF is given by

fX ,Y (x , y)dydx = P(X ∈ [x , x + dx ],Y ∈ [y , y + dy ])

The probability that (X ,Y ) ∈ S is thus given by∫ ∫
(x,y)∈S

f (x , y)dydx

Definition

The CDF of a jointly distributed continuous random variable is

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
f (x , y)dydx
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Previously on Mathematics for Engineers

We can also define marginal densities of X and Y by replacing sums with
integrals. The marginal density of X is

P(X ∈ [x , x + dx ]) =

∫
y

f (x , y)dy

The marginal density of Y is

P(Y ∈ [y , y + dy ]) =

∫
x

f (x , y)dx

Definition (Expectation)

Suppose X and Y are random variables with joint PDF fX ,Y (x , y). Then,
the expectation of g(X ,Y ) is defined as

E(g(X ,Y )) =

∫
x∈RX

∫
y∈RY

g(x , y)fX ,Y (x , y)dxdy
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Previously on Mathematics for Engineers

The idea of conditional probability of events can be extended similarly to
random variables to define conditional random variables and their PMFs
and PDFs. In the continuous setting, we can write

fX |Y (x |y) =
P(X ∈ [x , x + dx ],Y ∈ [y , y + dy ])

P(Y ∈ [y , y + dy ])
=

fX ,Y (x , y)

fY (y)

Definition

Two random variables X and Y are said to be independent if
pX ,Y (x , y) = pX (x)pY (y) or fX ,Y (x , y) = fX (x)fY (y)

In other words, knowing the value of realization of one of the random
variables does not affect the density of the other random variable and vice
versa.

We can also define independence using CDFs, i.e., X and Y are indepen-
dent if

FX ,Y (x , y) = FX (x)FY (y)
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Previously on Mathematics for Engineers

Definition (Covariance)

The covariance of two random variables X and Y is denoted by
Cov(X ,Y ) and is defined as

Cov(X ,Y ) = E
(

(X − E(X ))(Y − E(Y ))
)

What happens when X = Y ? The above equation is a bit unwieldy but
there is an easier way to compute the covariance.

Cov(X ,Y ) = E(XY )− E(X )E(Y )

Definition (Correlation)

The correlation coefficient of two random variables X and Y is denoted
using ρX ,Y and is defined as

ρX ,Y =
Cov(X ,Y )

σXσY
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Lecture Outline

The Problem
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The Problem
Envelope Paradox

You are to choose between two identical sealed envelopes containing money.
One of them has twice the amount in the other.

After choosing an envelope, you are given the option of switching to the
other envelope. Should you switch?
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The Problem
Envelope Paradox

Suppose, the amount in the envelope you selected is A. Then, the other
envelope either contains A/2 or 2A with equal probability.

Hence, the expected value of the amount in the other envelope is

1

2
A/2 +

1

2
2A =

5

4
A

Therefore, you must switch. But the same argument can be applied again!
What’s wrong with this answer?
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Lecture Outline

Sum of Independent Random Variables
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Sum of Independent Random Variables
Introduction

In several problems, we are interested in sums of independent random
variables. For example,

I Suppose the number of men and women who arrive at a polling
booth are independently Poisson distributed with rates λ1 and λ2.
What is the distribution of the number of the total number of voter
arrivals.

I The return from two stocks is independently normally distributed
with means µ1 and µ2 and variances σ2

1 and σ2
2 . What is the

distribution of the total return?
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Sum of Independent Random Variables
Binomial Distributed Random Variables

Suppose X ∼ Bin(n, p) and Y ∼ Bin(m, p). Then, the random variable
Z = X +Y also has a Binomial distribution with parameters n+m and p.

This is expected since the trails in the Binomial distribution are all in-
dependent. One can also show this mathematically using the techniques
discussed in the next few slides.
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Sum of Independent Random Variables
Poisson Random Variables

Suppose X ∼ Pois(λ1) and Y ∼ Pois(λ2). What is the distribution of X + Y ?
The random variable Z = X + Y is Poisson distributed with parameter λ1 + λ2.

P(Z = z) = P(X + Y = z)

=
z∑

k=0

P(X = k,Y = z − k)

=
z∑

k=0

P(X = k)P(Y = z − k)

=
z∑

k=0

e−λ1λk
1

k!

e−λ2λz−k
2

(z − k)!

= e−(λ1+λ2)
z∑

k=0

λk
1

k!

λz−k
2

(z − k)!

=
e−(λ1+λ2)

z!

z∑
k=0

z!

(z − k)!k!
λk
1λ

z−k
2 =

e−(λ1+λ2)

z!
(λ1 + λ2)z
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Sum of Independent Random Variables
Uniform Random Variables

Suppose X ∼ U(0, 1) and Y ∼ U(0, 1). Define Z = X + Y . All three
random variables X ,Y , and Z are continuous random variables.

What is the support of Z? The most convenient way to derive the density
and distribution of Z is to work with its CDF.

FZ (z) = P(Z ≤ z) = P(X + Y ≤ z)

=

∫ ∞
−∞

P(X ≤ z − y)P
(
Y ∈ [y , y + dy ]

)
dy

=

∫ ∞
−∞

FX (z − y)fY (y)dy
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Sum of Independent Random Variables
Uniform Random Variables

We can also derive the same result in a slightly different manner using joint
densities and independence.

FZ (z) = P(X + Y ≤ z)

=

∫ ∫
x+y≤z

fX ,Y (x , y)dxdy

=

∫ ∫
x+y≤z

fX (x)fY (y)dxdy

=

∫ ∞
−∞

(∫ z−y

−∞
fX (x)dx

)
fY (y)dy =

∫ ∞
−∞

FX (z − y)fY (y)dy
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Sum of Independent Random Variables
Uniform Random Variables

The CDFs can be differentiated to get the PDFs of the sums.

fZ (z) =
d

dz

∫ ∞
−∞

FX (z − y)fY (y)dy

=

∫ ∞
−∞

fX (z − y)fY (y)dy

Use this expression to derive the PDF of the sum of two uniforms between 0
and 1. If z ∈ [0, 1], fZ (z) =

∫ z

0
dy and if z ∈ [1, 2], fZ (z) =

∫ 1

z−1
dy . Thus,

fZ (z) =


z if 0 ≤ z ≤ 1

2− z if 1 < z ≤ 2

0 otherwise
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Sum of Independent Random Variables
Gaussian Random Variables

Suppose X and Y are two standard normal random variables. What is the
distribution of Z = X + Y ? Using the earlier formula,

fZ (z) =

∫ ∞
−∞

fX (z − y)fY (y)dy

=

∫ ∞
−∞

1√
2π

e−
1
2 (z−y)

2 1√
2π

e−
1
2 y

2

dy

which when simplified leads to

1

2
√
π
e−

1
4 (z)

2

which is the PDF of a normal random variable with mean 0 and variance
2.
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Sum of Independent Random Variables
Gaussian Random Variables

This result can be generalized to more than two random variables with
different means and variances.

If Xi ∼ N (µi , σ
2
i ), for i = 1, . . . , n, then

n∑
i=1

Xi ∼ N

(
n∑

i=1

µi ,

n∑
i=1

σ2
i

)
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Sum of Independent Random Variables
Convolutions

The method described so far is a general approach to finding the distribu-
tion of sum(s) of random variables.

The distribution function of the sum Z , FZ (z) is said to be the convolution
of the distribution functions of X and Y .

However, it is not necessary that the sum of random variables have the
same distribution or even a known distribution.
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Lecture Outline

Other Functions
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Other Functions
Introduction

Several situations may require us to derive the PDF and CDF of other
functions of random variables. For example,

I The arrival time of two travellers at a bus stop is independent and
uniformly distributed in [0, 5]. What is the distribution of the
duration of their overlap?

I The lifetime of two light bulbs is independent and exponentially
distributed with means λ1 and λ2. What is the PDF function of the
duration of a series connection of these light bulbs.

Independence allows us to simplify calculations but if not assumed, we can
derive the required distributions using joint PMFs/PDFs.
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Other Functions
Minimum of Random Variables

Consider the exponential random variable example. Let X1 ∼ exp(λ1) and
X2 ∼ exp(λ2) indicate the lifetime of the two bulbs. Here we are interested
in the PDF of the random variable X = min{X1,X2}.

Again, just as done in the case of convolutions, it is easier to work with
the CDF.

1− FX (x) = P(X ≥ x)

= P(X1 ≥ x ,X2 ≥ x)

= P(X1 ≥ x)P(X2 ≥ x)

= e−λ1xe−λ2x

= e−(λ1+λ2)x

Hence, X is exponentially distributed with a rate λ1 + λ2.
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Other Functions
Order Statistics

Imagine a function of several random variables, representing a specific
transformation such as increasing or decreasing order.

Specifically, let X1,X2, . . . ,Xn be continuous, independent and identically
distributed (iid) random variables with a density function f .

Define a new vector of random variables X(1),X(2), . . . ,X(n) such that X(j)

indicates the jth smallest element. That is X(1) = min{X1,X2, . . . ,Xn}.
X(2) is the second smallest element and so on.

These new random variables are called order statistics and note that they
always satisfy X(1) ≤ X(2) ≤ . . . ≤ X(n). What is the PDF and CDF of the
1st and nth order statistic? jth order statistic?
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Other Functions
Order Statistics

Is the jth order statistic a discrete or a continuous random variable? What
is its support?

The CDF of X(j), FX(j)
(x) is the probability with which X(j) is less than

or equal to x . For this to happen, at least j random variables must be
less than or equal to x and the remaining n− j random variables must be
greater than x .

FX(j)
(x) =

n∑
k=j

(
n

k

)
F (x)k(1− F (x))n−k

Differentiating this expression, we can show that the PDF of the jth order
statistic is

fX(j)
(x) =

n!

(n − j)!(j − 1)!
F (x)j−1(1− F (x))n−j f (x)
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Other Functions
Order Statistics

The PDF can also be derived from the following argument. For X(j) to
belong to a dx around x , j − 1 random variables should be less than or
equal to x , n− j should be greater than x , and exactly one random variable
should be in [x , x + dx ].

This occurs with probability F (x)j−1(1 − F (x))n−j f (x). But there are
several ways of selecting three groups of sizes j − 1, n − j , and 1. Hence,
the PDF is

fX(j)
(x) =

(
n

j − 1, n − j , 1

)
F (x)j−1(1− F (x))n−j f (x)

=
n!

(n − j)!(j − 1)!
F (x)j−1(1− F (x))n−j f (x)

Order statistics have several applications. For example, in auctions, they
can be used to determine how likely one can win with a bid and the
expected amount they might have to pay.
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Other Functions
General Functions of Univariate Random Variables

In addition to specific functions, we can also find the PDF of generic
functions of random variable under some conditions.

We have already discussed what happens to expectations and variances
under such transformations but did not discuss the PDF.

We will only look at the continuous univariate case but the extensions to
multivariate joint distributions exist and are similar.

We have already encountered this situation in a couple of instances. (Where?)
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Other Functions
General Functions of Univariate Random Variables

As an example, let X ∼ U(0, 1). What is the PDF of Y = X n? What is
the support of Y ? Again, we use the CDF to get to the PDF.

FY (y) = P(Y ≤ y)

= P(X n ≤ y)

= P(X ≤ y1/n)

= FX (y1/n)

= y1/n

Hence, the PDF of Y is

fY (y) =


1

n
y1/n−1 if 0 ≤ y ≤ 1

0 otherwise
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Other Functions
General Functions of Univariate Random Variables

Claim

Let X be a continuous random variable and g(.) be a strictly monotonic and
differentiable function. The PDF of the random variable Y = g(X ) is given by

fY (y) =

{
fX
(
g−1(y)

)
| d
dy
g−1(y)| if y = g(x) for some x

0 otherwise

Proof.

Suppose g is strictly increasing. If y = g(x) for some x ,

FY (y) = P(g(X ) ≤ y)

= P(X ≤ g−1(y))

= FX (g−1(y))

Differentiating this, we get

fY (y) = fX
(
g−1(y)

) d

dy
g−1(y)

If there is no x for which y = g(x), then FX (x) is either 0 or 1 and hence its
derivative is 0. The case of strictly decreasing g is left as an exercise. �
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Lecture Outline

Expectation and Variance
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Expectation and Variance
Introduction

When we deal with functions of random variables, expectation can be
calculated using the joint density as done in the last lecture. We can also
calculate covariance terms from the definition.

However, for sums of random variables, the expressions for expectation and
covariances are simpler.
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Expectation and Variance
Expectation of Sums

Claim

Suppose X1, . . . ,Xn denotes a vector of random variables such that
|E(Xi )| <∞. Then,

E(X1 + . . .+ Xn) = E(X1) + . . .+ E(Xn)

Proof.

The following is a proof for two random variables. It can be extended to the
general case using induction.

E(X1 + X2) =

∫ ∫
(x1 + x2)f (x1, x2)dx1dx2

=

∫ ∫
x1f (x1, x2)dx2dx1 +

∫ ∫
x2f (x1, x2)dx1dx2

=

∫
x1f (x1)dx1 +

∫
x2f (x2)dx2

= E(X1) + E(X2)

�
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Expectation and Variance
Expectation of Sums

Note that for the previous result we do not need the random variable to

I Be independent

I Have the same distribution

Using this result, assuming a success probability of p, find the expected
value of a

I Binomial random variable for n trials

I Negative binomial random variable for r successes
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Expectation and Variance
Variance of Sums

Claim

Cov

 n∑
i=1

Xi ,

m∑
j=1

Yj

 =
n∑

i=1

m∑
j=1

Cov(Xi ,Yj)

Proof.

Exercise. Use the definition of Covariance

Cov(X ,Y ) = E
(

(X − E(X ))(Y − E(Y ))
)

�
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Expectation and Variance
Variance of Sums

Thus, the variance of a sum of random variables can be written as

V

(
n∑

i=1

Xi

)
=

n∑
i=1

n∑
j=1

Cov(Xi ,Xj)

=
n∑

i=1

V (Xi ) +
∑∑

i 6=j

Cov(Xi ,Xj)

=
n∑

i=1

V (Xi ) + 2
∑∑

i<j

Cov(Xi ,Xj)

Corollary

If Xi s are independent, then V
(∑n

i=1 Xi

)
=
∑n

i=1 V (Xi )
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Lecture Outline

A Solution
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A Solution
Two Envelope Problem

There are a few ways to resolve this problem. First, is to use the gains and
losses instead of the absolute values. Suppose your envelope has A.

Swapping can give you a gain of A or −A with equal probability and hence
the expected gain is 0.
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A Solution
Two Envelope Problem

The problem with the earlier expectation calculation is that it is not con-
ditioned. Since we are comparing A with the expected value in the other
envelope, A must refer to the expected amount in envelope 1 and not the
absolute amount.

The right way to find the expectation is that, the expected value in the
other envelope (say envelope 2) is

Expected value in 2 = 1/2 (expected value in 2 | 1 has more amount than
2) + 1/2 (expected value in 2 | 2 has more amount than 1)

If x and 2x were the amounts in both envelopes, we get Expected value
in 2 = 1/2(x + 2x), which is also the expected value in 1 (=A).
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Your Moment of Zen
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