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Previously on Mathematics for Engineers

A random variable is an alternate way of constructing events. Defining
random variables allows us to translate events of interest into probabilities
more easily.

Definition (Random Variable)

A real-valued random variable is a function or mapping X : Ω→ R such
that for all S ⊂ R, X−1(S) ∈ F .

Ω

ℝ

*Technically, there are some restrictions on S just like valid events, but we’ll ignore those details.
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Previously on Mathematics for Engineers

Note the probability measure is a function P : F → [0, 1] where you can
think of F as 2Ω, whereas the random variable X is another function
X : Ω→ R.

As seen in the previous examples, for subsets S ⊂ R, we can find an event
A ∈ F such that X−1(S) = A = {ω ∈ Ω|X (ω) ∈ S}.

Hence, the following probabilities are the same

P(X ∈ S) = P(X−1(S)) = P(A) = P({ω ∈ Ω|X (ω) ∈ S})

Be careful to not write X (A) and P(S), where A ∈ F and S ⊂ R (unless
of course Ω = R).
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Previously on Mathematics for Engineers

Instead, if we define X as the absolute value of difference in the numbers
on the dice. What is the event corresponding to X = 7? X = 1?

ℝ

0 1 2 3 4 5

1 2 3 4 5 6

1
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Previously on Mathematics for Engineers

Definition (Probability Mass Function)

The probability mass function (PMF) of a random variable X represents
the probability of each outcome. It is denoted as pX (x) and is defined as

pX (x) = P(X = x)

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
denoted by FX (x) and is defined as

FX (x) = P(X ≤ x) =
∑
x′≤x

pX (x ′)
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Previously on Mathematics for Engineers

Definition (Expectation)

The expected value of a random variable X is denoted by E(X ) or µX

and is defined as
E(X ) =

∑
x∈RX

xpX (x)

Definition (Variance)

The variance of a random variable X is denoted by V (X ), Var(X ), or σ2
X

and is defined as

V (X ) = E
(
(X − µX )2

)
=
∑
x∈RX

(x − µX )2pX (x)
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Previously on Mathematics for Engineers

Continuous random variables are ones which have uncountable im-
ages. (Their domain will hence be an uncountable sample space.)

For example, X could represent the location of a randomly thrown
dart on the interval [0, 1] in which case it can be written as X :
[0, 1] → R or on a two-dimensional circle of some radius, i.e., X :
C → R, where C = {(x , y)|x2 + y2 ≤ r} etc.

ℝ
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Previously on Mathematics for Engineers

Definition (Probability Density Function)

The probability density function (PDF) of a continuous random variable
is denoted as fX (x) and is defined as

fX (x)dx = P
(
X ∈ [x , x + dx ]

)
Thus, the probability that the random variable lies in a subset S is given
by

P(X ∈ S) =

∫
x∈S

fX (x)dx

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
denoted by FX (x) and is defined as

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (x)dx
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Previously on Mathematics for Engineers

Definition (Expectation)

The expected value of a random variable X is denoted by E(X ) or µX

and is defined as

E(X ) =

∫
x∈RX

xfX (x)dx

Definition (Variance)

The variance of a random variable X is denoted by V (X ), Var(X ), or σ2
X

and is defined as

V (X ) = E
(
(X − µX )2

)
=

∫
x∈RX

(x − µX )2fX (x)dx
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Lecture Outline

The Problem
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The Problem
Buffon’s Needle Experiment

Consider a floor with parallel strips of width D units. Needles of length L
are randomly dropped on the floor. What is the probability that the needle
will cross the line between two strips.

www.randomservices.org/random/apps/BuffonNeedleExperiment.html

In 1901, a mathematician Mario Lazzarini actually tossed 3408 needs to
find an approximation of π to six decimal places.
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Lecture Outline

Jointly Distributed Random Variables
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Jointly Distributed Random Variables
Introduction

Consider two random variables X : Ω → R and Y : Ω → R. Suppose we
are interested in the probability that

P((X ,Y ) ∈ S)

We can compute the probability of such events by extending the concepts
of PDF and CDF to situations involving two or more random variables on
the same sample space.
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Jointly Distributed Random Variables
Introduction

Note that finding the probability of P((X ,Y ) ∈ S) is different and more
general than finding P(X ∈ S ,Y ∈ T ). Graphically, these imply

Ω

𝑋:Ω → ℝ

𝑌:Ω → ℝ

Ω

𝑋:Ω → ℝ

𝑌:Ω → ℝ

Note that P(X ∈ S ,Y ∈ T ) is not necessarily P(X ∈ S)P(Y ∈ T ). For
example, imagine an experiment that involves picking a person from a
population and measuring their height and weight.
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Jointly Distributed Random Variables
Joint PMF

The comma in the following notation is treated as and, i.e., the intersection
of the events associated with X = x and Y = y .

Definition

If X and Y are two random variables, the joint PMF is given by

pX ,Y (x , y) = P(X = x ,Y = y)

I The probability that (X ,Y ) ∈ S is simply
∑∑

(x,y)∈S pX ,Y (x , y).

I For the joint PMF to be valid
∑

x∈RX

∑
y∈RY

pX ,Y (x , y) = 1.

Let us look at two motivating examples, one for the discrete case and the
other for continuous state spaces.
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Jointly Distributed Random Variables
Discrete State Space

Suppose that 15% of the families in a certain community have no children,
20% have 1 child, 35% have 2 children, and 30% have 3 children. Suppose
further that in each family each child is equally likely (independently) to
be a boy or a girl.

For a family is chosen at random from this community, let X and Y be the
number of boys and number of girls. What is the probability that X = x
and Y = y .
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Jointly Distributed Random Variables
Discrete State Space

Both random variables X and Y can take values 0, 1, 2, or 3. The
probability that the family has say x boys and y girls is

P(X = x ,Y = y) =P(X = x ,Y = y |no children)P(no children)+

P(X = x ,Y = y |1 child)P(1 child)+

P(X = x ,Y = y |2 children)P(2 children)+

P(X = x ,Y = y |3 children)P(3 children)

What are the answers for X = 1,Y = 1? X = 2,Y = 1?
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Jointly Distributed Random Variables
Discrete State Space

x↓ y → 0 1 2 3 P(X = x)

0 0.15 0.10 0.0875 0.0375 0.375

1 0.10 0.175 0.1125 0 0.3875

2 0.0875 0.1125 0 0 0.2

3 0.0375 0 0 0 0.0375

P(Y = y) 0.375 0.3875 0.2 0.0375

The row and column sums have a special significance but will they always
be same?
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Jointly Distributed Random Variables
Marginal Distributions

If we add the rows, we get the probability distribution of X , which is said
to be the marginal PMF of X .

pX (x) =
∑
y

pXY (x , y)

This follows directly from the law of total probability. Suppose we want the
probability that X = x . Call this event B. We can condition it on events
A1, A2 etc. associated with Y = y1, Y = y2, and so on respectively.

P(B) = P(A1 ∩ B) + P(A2 ∩ B) + . . .

Likewise, if we add elements in each column, we get the probability distri-
bution of Y , which is the marginal PMF of Y .

pY (y) =
∑
x

pXY (x , y)
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Jointly Distributed Random Variables
Visualizing Joint PMF
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Jointly Distributed Random Variables

Definition

The CDF of jointly distributed random variable is defined as

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

x / y 0 1 2 3

0 0.15 0.10 0.0875 0.0375

1 0.10 0.175 0.1125 0

2 0.0875 0.1125 0 0

3 0.0375 0 0 0

x / y 0 1 2 3

0 0.15 0.25 0.3375 0.375

1 0.25 0.525 0.725 0.7625

2 0.3375 0.725 0.925 0.9625

3 0.375 0.7625 0.9625 1.0
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Jointly Distributed Random Variables
Expectation

Remember that expectation is a scalar quantity. When dealing with multi-
ple random variables, we define the expectation of functions of the random
variables.

Definition (Expectation)

Suppose X and Y are random variables with joint PMF pX ,Y (x , y).
Then, the expectation of g(X ,Y ) is defined as

E(g(X ,Y )) =
∑
x∈RX

∑
y∈RY

g(x , y)pX ,Y (x , y)

The interpretation is similar. If we perform this experiment repeatedly,
observe the realizations of the random variables, estimate g(x , y), and
take its average over all repetitions, we get the expected value.

In the earlier example, what is the average number of children in the
household? E(X + Y )
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Jointly Distributed Random Variables
Continuous State Spaces

Consider a uniformly distributed random variable over a 2D region shown
below. Imagine you throw darts at this shape but in a random manner.
If X denotes the x coordinate of the dart, what is the probability of X ∈
[x , x + dx ],Y ∈ [y , y + dx ]? What is the joint PDF of (X ,Y )

4 5 6

1

2

3

4
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Jointly Distributed Random Variables
Joint PDF

Definition

If X and Y are two random variables, the joint PDF is given by

fX ,Y (x , y)dydx = P(X ∈ [x , x + dx ],Y ∈ [y , y + dy ])

When clear from the context, we write fX ,Y (x , y) as f (x , y).

The probability that (X ,Y ) ∈ S is thus given by∫ ∫
(x,y)∈S

f (x , y)dydx
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Jointly Distributed Random Variables
Joint PDF

Here is an example of a joint PDF f (x , y) = k(x2 + y2), if x ∈ [20, 30]
and y ∈ [20, 30] and is 0 otherwise.

The right panel shows the region above the event that the magnitude of
the difference between the random variables is at most 2.
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Jointly Distributed Random Variables
Joint CDF

The cumulative distribution function is defined just as done in the discrete
case

Definition

The CDF of a jointly distributed continuous random variable is

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
f (x , y)dydx

The CDF must also satisfy

f (x , y) =
∂2F (x , y)

∂x∂y

Can you sketch the CDF for the 2D dart example? How about a 2D dart
example on a unit square?
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Jointly Distributed Random Variables
Marginal Densities and Expectation

We can also define marginal densities of X and Y by replacing sums with
integrals. The marginal distribution of X is

P(X ∈ [x , x + dx ]) =

(∫
y

f (x , y)dy

)
dx

The marginal distribution of Y is

P(Y ∈ [y , y + dy ]) =

(∫
x

f (x , y)dx

)
dy

What are the marginal densities of X and Y in the 2D dart example? Be
careful with the limits of integration!

Definition (Expectation)

Suppose X and Y are random variables with joint PDF fX ,Y (x , y). Then,
the expectation of g(X ,Y ) is defined as

E(g(X ,Y )) =

∫
x∈RX

∫
y∈RY

g(x , y)fX ,Y (x , y)dxdy
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Jointly Distributed Random Variables
Quickercise

Consider two random variables X and Y representing the time to failure
of hard disk and processor of a computer respectively. If their joint PDF
is given by f (x , y) = 2e−xe−2y , what is the probability that the hard disk
fails before the processor?
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Lecture Outline

Conditional Random Variables and
Independence
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Conditional Random Variables and Independence
Conditional Distribution

The idea of conditional probability of events can be extended similarly to
random variables to define conditional random variables and their PMFs
and PDFs.

For example, in the discrete setting, we can define the PMF of a conditional
random variable as pX |Y (x |y) as

pX |Y (x |y) =
P(X = x ,Y = y)

P(Y = y)

That is, we are conditioning X with events associated with Y = y .

Likewise, in the continuous setting, we can write

fX |Y (x |y) =
P(X ∈ [x , x + dx ],Y ∈ [y , y + dy ])

P(Y ∈ [y , y + dy ])
=

fX ,Y (x , y)

fY (y)
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Conditional Random Variables and Independence
Independence

Definition

Two random variables X and Y are said to be independent if
pX ,Y (x , y) = pX (x)pY (y) or fX ,Y (x , y) = fX (x)fY (y)

In other words, knowing the value of realization of one of the random
variables does not affect the density of the other random variable and vice
versa.

We can also define independence using CDFs, i.e., X and Y are indepen-
dent if

FX ,Y (x , y) = FX (x)FY (y)
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Conditional Random Variables and Independence
Quickercise

I Suppose we perform 5 coin tosses. If X is the number of heads in
the first 3 coin tosses, and Y is the number of heads in the next 2
coin tosses. (Why? Can you construct the joint and marginal PMFs)

I If X and Y have a joint PDF f (x , y) = 6e−2xe−3y , where x ≥ 0
and y ≥ 0. Are they independent?

I If two random variables X and Y are independent, show that

E(XY ) = E(X )E(Y )

More generally, E(g(X )h(Y )) = E(g(X ))E(h(Y )).
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Lecture Outline

Covariance and Correlation
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Covariance and Correlation
Extending Variance

So far we have discussed the expectation of functions of random variables
but extending the definition of variance is not straightforward.

Definition (Covariance)

The covariance of two random variables X and Y is denoted by
Cov(X ,Y ) and is defined as

Cov(X ,Y ) = E
(

(X − E(X ))(Y − E(Y ))
)

What happens when X = Y ? The above equation is a bit unwieldy but
there is an easier way to compute the covariance.

Cov(X ,Y ) = E(XY )− E(X )E(Y )
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Covariance and Correlation
Extending Variance

Unlike variance, covariance can be positive or negative.

Positive covariance implies that as when X is large, Y is likely to be large
as well and vice versa. Negative covariance implies that when X is large,
Y tends to be small.

What is Cov(X ,Y ) when X and Y are independent? The converse is
not true! It is possible to have dependent random variables with zero
covariance.
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Covariance and Correlation
Correlation

The sign of covariance very informative, but its magnitude is not is not.
To make sense of the magnitude of covariance between random variables,
some normalization with the standard deviations of X and Y is needed.

Definition (Correlation)

The correlation coefficient of two random variables X and Y is denoted
using ρX ,Y and is defined as

ρX ,Y =
Cov(X ,Y )

σXσY

It turns out that ρX ,Y ∈ [−1, 1]. A value of 1 indicates a linear relationship
with positive slope between X and Y (i.e., X = aY + b, a > 0)

Likewise, a value of -1 indicates a linear relationship with negative slope.
A value of 0 just implies no linear relationship between X and Y .
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Lecture Outline

Multivariate Distribution
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Multivariate Distribution
Introduction

The concept of joint PMFs and PDFs can be trivially extended to situations
involving more than 2 variables.

The joint PDF of a random vector X = (X1,X2, . . . ,Xn) can be written as

P(X1 ∈ [x1, x1 + dx1], . . . ,Xn ∈ [xn, xn + dxn]) = f (x1, x2, . . . , xn)dx1 . . . dxn

= f (x)dx1 . . . dxn

Thus, the probability that (X1,X2, . . . ,Xn) ∈ S ⊂ Rn can be obtained
from an n-dimensional integral∫ ∫

. . .

∫
(x1,x2,...,xn)∈S

f (x1, x2, . . . , xn)dx1dx2 . . . dxn

Note: All vectors will be assumed to be column vectors.

Lecture 6 Multivariate Random Variables



40/47

Multivariate Distribution
CDF and Expectation

The CDF and expected values can similarly be extended as follows.

F (x1, x2, . . . , xn) =

x1∫
−∞

x2∫
−∞

. . .

xn∫
−∞

f (x1, x2, . . . , xn)dx1dx2 . . . dxn

E(g(X)) =

∫
x1∈RX1

. . .

∫
xn∈RXn

g(x1, . . . , xn)f (x1, . . . , xn)dx1 . . . dxn

How do we define the marginal densities of X1, . . . ,Xn?

*Note that in defining the CDF we have been writing F (x) =
∫ x

−∞ f (x)dx instead

of the more precise F (x) =
∫ x

−∞ f (t)dt. Inconvenience caused to the observant

and confused student is regretted.
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Multivariate Distribution
Covariances

We still define covariances between every pair of random variables in the
vector.

Cov(XiXj) = E
(

(Xi − E(Xi ))(Xj − E(Xj)
)

How many such covariances terms can we define? The covariance terms
can be represented in a matrix form and is usually denoted as V (X) = Σ.
Does this matrix have any obvious property?

Suppose the vector of expected values (E(X1),E(X2), . . . ,E(Xn)) is written
as µ. A shorthand notation for the covariance matrix is

Σ = E
(
(X− µ)(X− µ)T

)
= E(XXT )− E(X)E(XT )
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Multivariate Distribution
Expectation and Variance

The properties of variance and expectation that we have seen so far are
applicable to vectors of random variables as well!

For example, assume A is an n × n matrix and b is an n × 1 vector.

I E(AX + b) = AE(X) + b

I V (AX + b) = AV (X)AT = AΣAT
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Multivariate Distribution
Normal Distribution

One of the most popular multivariate distribution is the multivariate normal
distribution.
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Multivariate Distribution
Normal Distribution

If X ∼ N (µ,Σ) is an n-dimensional random variable and suppose Σ is
positive definite, then its joint PDF is given by

fX(x) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)

which in the degenerate case of a single random variable takes the form
discussed in previous class

fX (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )2

It can be shown that the marginal densities of the multivariate normal
random variable is also normal.
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Lecture Outline

A Solution
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A Solution
Buffon’s Needle Experiment

Define random variables X as the distance from the mid-point of the needle
to the nearest parallel line and θ as the angle between the needle and the
perpendicular from the mid-point as shown in the figure

The needle cuts the line if X < L/2 cos θ. Find the probability of this using
joint densities. The answer turns out to be 2L/πD.
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Your Moment of Zen
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