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Previously on Mathematics for Engineers

Suppose an unbiased coin is tossed thrice. Such an act is called an ex-
periment. Each experiment results in an outcome, e.g., Heads, Tails,
Heads.

The set of all possible outcomes is called the sample space which is usually
denoted by Ω. We are usually interested in the probability that one or some
of the outcomes the sample space occur.

These questions can be translated to a subset of outcomes that are called
events. We say that an event happened if one of the outcomes in the
event occurs during the experiment.

For example, in the previous experiments. What is the event where we see
exactly two heads

{HHT ,HTH,THH}

Note that not all subsets can be easily described in words. But we still
treat them as events (barring a few) and can ask the probability of its
occurrence.

Lecture 3 Independence and Introduction to Random Variables



3/42

Previously on Mathematics for Engineers

An intuitive and familiar way for computing probabilities of events is to
look at the number of elements in the event and divide it by the total
number of outcomes.

Definition (Discrete Uniform Probability)

Suppose the sample space of an experiment consists of n outcomes which
are equally likely, then the probability of an event A is

P(A) =
|A|
|Ω|

One must be careful in constructing the outcomes of the sample space.
For example, when two dice are thrown, the sum has 11 outcomes: 2, 3,
. . . , 12. Using this argument, the probability is 1/11. If you treat the
dice to be indistinguishable, the answer would be 3/21 (Why?) Both the
answers are wrong because all outcomes are not equally likely.
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Previously on Mathematics for Engineers

Every event is a subset of the sample space but not all subsets are valid
events. The set of all valid events is called a σ-algebra and is denoted by
F .

The tuple (Ω,F) is said to be a measurable space and given such a space,
we can define a probability measure P : F → [0, 1] which satisfies the three
axioms. The triple (Ω,F ,P) is called the probability space.
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Previously on Mathematics for Engineers

To summarize, a probability space consists of three components

I A sample space Ω which is the set of all outcomes

I A set of events F
I A probability measure or a function P : F → [0, 1]

The probability measure must satisfy the following three axioms.

Axioms

1 For every event A ∈ F , P(A) ≥ 0

2 P(Ω) = 1

3 If A1,A2, . . . ∈ F are disjoint events, i.e., Ai ∩ Aj = ∅ ∀i , j , then

P
(
∪∞

i=1 Ai ) =
∞∑
i=1

P(Ai )
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Previously on Mathematics for Engineers

Definition (Conditional Probability)

If A and B are two events and if P(B) > 0, P(A|B) = P(A∩B)
P(B)

Definition (Law of Total Probability)

Suppose A1, . . . ,An represents a partition of the sample space Ω and
P(Ai ) > 0∀ i = 1, . . . , n. Then, for any event B

P(B) = P(A1 ∩ B) + P(A2 ∩ B) + . . . + P(An ∩ B)

= P(A1)P(B|A1) + . . . + P(An)P(B|An)

B

Ω𝐴1

𝐴2

𝐴3

𝐴4
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Previously on Mathematics for Engineers

Theorem (Bayes’ Theorem)

Suppose A1, . . . ,An represents a partition of the sample space Ω and
P(Ai ) > 0 ∀ i = 1, . . . , n. Then, for any event B with P(B) > 0

P(Ai |B) =
P(Ai )P(B|Ai )

P(B)

=
P(Ai )P(B|Ai )

P(A1)P(B|A1) + . . .+ P(An)P(B|An)

For two events A and Ac , Bayes’ theorem can be rewritten as

P(A|B) =
P(A)P(B|A)

P(A)P(B|A) + P(Ac)P(B|Ac)
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Lecture Outline

The Problem
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The Problem
The Monty Hall Problem

Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say
No. 1, and the host, who knows what’s behind the doors, opens another
door, say No. 3, which has a goat.

He then says to you, “Do you want to pick door No. 2?” Is it to your
advantage to switch your choice?
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Lecture Outline

Independence
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Independence
Intuition and Definition

Imagine a finite same space. If an event A can happen in |A| ways and
event B happens in |B| ways. If both events are independent of each other,
in how many ways can A and B occur? |A||B|.

The same logic can be extended to probability and other kinds of sample
spaces.

Definition (Independence)

Given a probability space (Ω,F ,P), two events A and B in F are said to
be independent if P(A ∩ B) = P(A)P(B).

Events that are not independent are said to be dependent. The notation
A |= B is sometimes used to indicate that A and B are independent.
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Independence
Conditional Probability

If two events A and B are independent of each other, what can you say
about P(A|B)? What about P(B|A)? In other words, does the occurrence
of B provide any information on the occurrence of A and vice versa?

Claim

If two events A and B are independent, P(A|B) = P(A) and
P(B|A) = P(B).

Is the converse true? We prefer using the earlier definition since it does
not require the probabilities of the events to be strictly positive.

Suppose two events A and B are disjoint. Are they independent? Can you
think of an example?
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Independence
Quickercise

I Suppose a card is randomly picked from a deck of 52 cards. If A
and B represent events that the selected card is an ace and spade
respectively, are they independent?

I Suppose an unbiased coin is flipped twice. Let A denote the event
that we see head on the first toss and B represent the event of
seeing a tail on the second toss. Are these two independent?

I Suppose we roll two dice and A is the event that the sum is 6 and B
is the event that the first dice lands on 4. Are A and B
independent? What if A was the event that the sum is 7?
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Independence
Caution

Note that in the coin toss example, it is okay to reason that the first toss
has two outcomes H and T and hence the probability of A is 1/2. The
same argument applies for event B.

But to be very precise, we are mixing up two experiments. The probabilities
of the events are defined using (Ω,F).

Hence, we must use the outcomes of the form (H,H) and (H,T ) for the
event A and (H,T ) and (T ,H) for event B.
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Independence
Mutual Independence

What if we have more than three events? Consider the following three
events in the context of rolling two dice:

I A: Sum of dice is 7

I B: First dice is 4

I C : Second dice is 3

Clearly, A and B, B and C , and C and A are independent of each other.
However, if we knew that B and C occurred, we can definitely say some-
thing more about A.

Hence, we could decide to define independence as

P(A ∩ B ∩ C ) = P(A)P(B)P(C )

.
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Independence
Mutual Independence

However, P(A ∩ B ∩ C ) = P(A)P(B)P(C ) does not imply pairwise inde-
pendence as seen in the following example. Suppose the events in the two
dice case are:

I A: First dice is 1, 2, or 3

I B: First dice is 3, 4, or 5

I C : Sum of dice is 9
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Independence
Mutual Independence

Definition (Independence of Three Events)

Three events A, B, and C are said to be independent if

P(A ∩ B) = P(A)P(B)

P(B ∩ C ) = P(B)P(C )

P(C ∩ A) = P(C )P(A)

P(A ∩ B ∩ C ) = P(A)P(B)P(C )

Definition (Independence of n Events)

The A1,A2, . . . ,An are said to be independent if

P
(
∩I⊂{1,...,n}Ai

)
= Πi∈IP(Ai )
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Independence
Conditional Independence

Definition (Conditional Independence)

Given that an event C occurred, two events A and B are said to be
conditionally independent if P(A ∩ B|C ) = P(A|C )P(B|C )

Show that if P(B ∩ C ) 6= 0, the above definition is equivalent to

P(A|B ∩ C ) = P(A|C )
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Independence
Conditional Independence

Here is an example where two events are independent but are conditionally
dependent. Consider the following events in the context of tossing a coin
twice

I A: First toss is a head

I B: Second toss is a head

I C : Both tosses have different sides

Clearly, A and B are independent but P(A ∩ B|C ) = 0 and not equal to
P(A|C )P(B|C ).
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Independence
Conditional Independence

Here is another example where two events are conditionally independent
but not independent.

Two biased coins 1 and 2 can be chosen at random for two tosses. The
probability of observing heads on 1 is 0.99 and that on 2 is 0.01.

I A: First toss is a head

I B: Second toss is a head

I C : Coin 1 was selected

Here, P(A∩B|C ) = P(A|C )P(B|C ) = (0.99)(0.99). Calculate P(A),P(B),
and P(A ∩ B). (Hint: Use law of total probability)
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Lecture Outline

Random Variables
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Random Variables
Introduction

A random variable is an alternate way of constructing events. Defining
random variables allows us to translate events of interest into probabilities
more easily.

Definition (Random Variable)

A real-valued random variable is a function or mapping X : Ω→ R such
that for all S ⊂ R, X−1(S) ∈ F .

Ω

ℝ

*Technically, there are some restrictions on S just like valid events, but we’ll ignore those details.
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Random Variables
Introduction

For example, consider a coin toss. We could define a random variable as
follows:

X (ω) =

{
+1 if ω = H

−1 if ω = T ℝ

HT

−1 +1

Imagine you get |1 if it lands on H and pay |1 if it lands on T , then it is
natural to define a random variable this way.

We could ask what is the probability that you’ll get between [2, 3], exactly
-1, ≥ 0, etc. Each of these describes an event in F .

I X ∈ [2, 3] ≡ ∅
I X = −1 ≡ {T}
I X ≥ 0 ≡ {H}
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Random Variables
Introduction

There is nothing special about the +1 and -1 in the previous example. We
could define multiple random variables for the same probability space.

X (ω) =

{
+2019 if ω = H

−560012 if ω = T

This is a valid random variable (per-
haps not a useful one). The problem
context will help in defining random
variables.

We could ask again ask what is the probability that you’ll get between [2,
3] ∪ [2010, 2020], exactly -1, ≤ 2019, etc. Each of these cases describes
an event in F .

I X ∈ [2, 3] ∪ [2010, 2020] ≡ {H}
I X = −1 ≡ ∅
I X ≤ 2019 ≡ {H,T}
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Random Variables
Introduction

Now consider the case where you roll two dice. Suppose, X is the random
variable defined as the sum of the numbers.

ℝ

2 3 4 5 6 7 8 9 11 1210

1 2 3 4 5 6
1

2

3

4

5

6

Then, we could ask what is the probability that X = 7. This is same as
the probability with which the following event will occur

{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

What is the event corresponding to X ∈ [0, 1]?
Lecture 3 Independence and Introduction to Random Variables
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Random Variables
Introduction

Instead, if we define X as the absolute value of difference in the numbers
on the dice. What is the event corresponding to X = 7? X = 1?

ℝ

0 1 2 3 4 5

1 2 3 4 5 6

1

2

3

4

5

6
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Random Variables
Differences and Notation

Note the probability measure is a function P : F → [0, 1] where you can
think of F as 2Ω, whereas the random variable X is another function
X : Ω→ R.

As seen in the previous examples, for subsets S ⊂ R, we can find an event
A ∈ F such that X−1(S) = A = {ω ∈ Ω|X (ω) ∈ S}.

Hence, the following probabilities are the same

P(X ∈ S) = P(X−1(S)) = P(A) = P({ω ∈ Ω|X (ω) ∈ S})

Be careful to not write X (A) and P(S), where A ∈ F and S ⊂ R (unless
of course Ω = R).
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Random Variables
Discrete Random Variables

Discrete random variables are random variables that have a finite or count-
ably infinite images. (They can still be defined on an uncountable Ω.)

In the previous examples, we could list the probability of each outcome.
For instance, when two dice are thrown and the random variable is the
sum of numbers, the probabilities of the outcomes are

ω P({ω}) ω P({ω})

2 1/36 8 5/36
3 2/36 9 4/36
4 3/36 10 3/36
5 4/36 11 2/36
6 5/36 12 1/36
7 6/36
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Random Variables
Discrete Random Variables

2 3 4 5 6 7 8 9 10 11 12

5 · 10−2

0.1

0.15

P
ro

b
ab
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ty

*The bar widths have been magnified only for better readability. They are actually point masses concentrated at

each outcome.
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Random Variables
Discrete Random Variables

Definition (Probability Mass Function)

The probability mass function (PMF) of a random variable X represents
the probability of each outcome. It is denoted as pX (x) and is defined as

pX (x) = P(X = x)

If it is clear from the context, the subscript X can be ignored and the pmf
is simply written as p(x).

Given the PMF of X , we can find P(X ∈ S) using
∑

x∈S pX (x).

Note that capital letters X , Y are reserved for the random variables and
x , y are used to indicate its realizations or outcomes. So as pointed out
earlier, P(x) is bad notation.

Lecture 3 Independence and Introduction to Random Variables



32/42

Random Variables
Discrete Random Variables

In the problem of throwing two dice, what is the PMF of the random
variable defined as the absolute value of the difference of the numbers on
the faces.

x pX (x)

0 6/36
1 10/36
2 8/36
3 6/36
4 4/36
5 2/36

0 1 2 3 4 5

0.1

0.2

p
X

(x
)
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Random Variables
Discrete Random Variables

The probability with which random variables lie in the interval (−∞, x ] is
of special interest.

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
denoted by FX (x) and is defined as

FX (x) = P(X ≤ x) =
∑
x′≤x

pX (x ′)

Construct the CDF function for the coin toss experiment and the two
random variables defined for the dice experiment.
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Random Variables
Discrete Random Variables

The CDF function is always non-decreasing and right continuous. It also
satisfies

lim
x→−∞

FX (x) = 0 lim
x→+∞

FX (x) = 1

Further, for discrete random variables the CDF is a step function.

−1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
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Random Variables
Continuous Random Variables

Continuous random variables are ones which have uncountable images.
(Their domain will hence be an uncountable sample space.)

For example, X could represent the location of a randomly thrown dart
on the interval [0, 1] in which case it can be written as X : [0, 1] → R
or on a two-dimensional circle of some radius, i.e., X : C → R, where
C = {(x , y)|x2 + y2 ≤ r} etc.

ℝ
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Random Variables
Continuous Random Variables

Just like the discrete case, we define a probability density function but with
a small twist since the probability of observing a singleton event is 0.

Definition (Probability Density Function)

The probability density function (PDF) of a continuous random variable
is denoted as fX (x) and is defined as

fX (x)dx = P
(
X ∈ [x , x + dx ]

)
Thus, the probability that the random variable lies in a subset S is given
by

P(X ∈ S) =

∫
x∈S

fX (x)dx

Since the probability that X equals any value is 0, the above definition
could have been written using (x , x + dx ], [x , x + dx), or (x , x + dx).
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Random Variables
Continuous Random Variables

The definition of CDF for continuous random variables remains unchanged

Definition (Cumulative Distribution Function)

The cumulative distribution function (CDF) of a random variable X is
denoted by FX (x) and is defined as

FX (x) = P(X ≤ x) =

∫ x

−∞
fX (x)dx
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Random Variables
Continuous Random Variables

The PDF and CDF of a uniformly distributed random variable is shown
below.

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

Note that just as the sum of the lengths of the vertical bars in the discrete
case had to equal 1, the area under the PDF must be 1.

Lecture 3 Independence and Introduction to Random Variables



39/42

Random Variables
Support

Often we use the term support of a random variable to indicate the
points where the PMF or PDF is positive. Specifically,

For discrete random variables,

RX = {x ∈ R|pX (x) > 0}

For continuous random variables,

RX = {x ∈ R|fX (x) > 0}

What is the support of the random variable representing the sum of num-
bers on two dice? What is the support of the uniformly distributed random
variable that we saw earlier?
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Lecture Outline

A Solution
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A Solution
Monty Hall Problem

Here are the equiprobable outcomes of the Monty Hall problem. You could also
name the goats and write six outcomes.

Door 1 Door 2 Door 3 Stick Switch

Car Goat Goat W L
Goat Car Goat L W
Goat Goat Car L W

If you picked door 1 and the host opened door 3, it is tempting to think that the
odds of finding the goat or the car in the second door is 1/2.

The host does not pick any door. He chooses one of the two doors without
the car and always shows a goat. If A is the event of winning from your initial
choice (say door 1) and B is the event that the host shows you a goat, then
Bayes’ theorem gives P(A|B) = 1/3 which hasn’t improved from before.

However, the complement of A, i.e., winning from switching (or losing from
sticking to door 1) has a probability 2/3.

Lecture 3 Independence and Introduction to Random Variables



42/42

Your Moment of Zen
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