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Previously on Mathematics for Engineers

Definition (Convergence in Distribution)

A sequence of random variables {Xn} converges to X in distribution and

is denoted as Xn
d−→ X or Xn

D−→ X if

lim
n→∞

FXn(x) = FX (x)

for all x where FX (x) is continuous.

Definition (Convergence in Probability)

A sequence of random variables {Xn} converges to X in probability and is

denoted as Xn
p−→ X if

lim
n→∞

P(|Xn − X | ≥ ε) = 0

for all ε > 0.
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Previously on Mathematics for Engineers

Claim (WLLN)

Let {Xn} be a sequence of iid random variables with finite mean µ.

X n =
X1 + X2 + . . .+ Xn

n

p−→ µ

Claim (CLT)

Let {Xn} be a sequence of iid random variables with expected value
µ <∞ and variance σ2 <∞ and also suppose. Zn = X1 + X2 + . . .+ Xn

Then,
Zn − nµ

σ
√
n

d−→ N (0, 1)
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Lecture Outline
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Lecture Outline

The Problem
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The Problem

In the 1948 US presidential election, republican candidate Dewey was pre-
dicted to win against the incumbent democratic candidate Truman.

Sampled polls from several places motivated the Chicago Daily Tribune to
go to press with a headline ’Dewey Defeats Truman’ the night before the
results were announced.

However, Truman scored a landslide victory with 303 electoral votes against
Dewey’s 189. What could have gone wrong with the sampled polls?
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Lecture Outline

Point Estimation
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Point Estimation
Introduction

So far, we were able to analytically analyze the odds with which a certain
outcome or set of outcomes could occur.

We made assumptions of the knowledge of the parameters of the problem
such as the success probability or the arrival rate etc.

Statistics involves the study of the inverse problem. If we see a certain set
of outcome(s), what can we say about the random process or what can we
infer about the experiment.

This process requires results from repeated trails and each trial can be
treated as a random variable X1,X2, . . ..
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Point Estimation
Introduction

Suppose the random variables X1,X2, . . . follow the same distribution.
Imagine that we sample from that distribution to get realizations of these
random variables.

Point estimation procedures can be used to answer questions of the fol-
lowing type:

I What is the mean and variance of the random variable?

I What are the parameters of the random variable?

Parameters here are scalars used in the PDF and CDF. For example,

I Success probability of a Binomial random variable

I Mean and variance of a normal and Poisson distribution (They are
parameters too)

I α and β of Weibull distribution
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Point Estimation
Introduction

We will use θ to denote a generic parameter which could represent the
mean and variance or the parameters of the distribution.

Let us first estimate the mean and variance of a random variable. Suppose
we have a random sample X1,X2, . . . ,Xn, define another random variable
Θ̂n as a function of the random variables X1,X2, . . . ,Xn.
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Point Estimation
Introduction

Imagine the travel time on a street was lognormal and we are interested
in its mean and variance. Suppose, we make the following measurements
5,7,3,4, and 7.

To estimate the mean of the random variable µ, we will define Θ̂n as

Θ̂n =
X1 + X2 + . . .+ Xn

n

Θ̂n is a random variable since it is a function of random variables. Every
set of measurements of X s we make will give us a realization of Θ̂n.

Likewise, to estimate the variance σ2, we define

Θ̂n =
1

n − 1

n∑
i=1

(
Xi −

X1 + X2 + . . .+ Xn

n

)2
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Point Estimation
Properties

The specific choice of the estimator Θ̂ for a parameter θ is governed by a few
desirable properties.

Definition (Bias)

An estimator Θ̂n of θ is unbiased if the bias B(Θ̂n) = E(Θ̂n)− θ is 0.

Definition (MSE)

Given an estimator Θ̂n of θ, the mean squared error of the estimator is defined

as MSE(Θ̂n) = E
(

(Θ̂n − θ)2
)

Definition (Consistency)

An estimator Θ̂n of θ, is said to be consistent if Θ̂n
p−→ θ

A consistent estimator with zero bias and lower MSE is always preferred.
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Point Estimation
Estimator for Mean

In the example earlier, we can think of several candidate estimators of the
mean µ. For example,

Θ̂n = X1

Θ̂n =
X1 + X2 + . . .+ Xn

n

Are the above estimators consistent and unbiased? Which of the two
estimators have lower MSE?
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Point Estimation
Estimator for Standard Deviation

To estimate the variance σ2 we proposed the following estimator

Θ̂n =
1

n − 1

n∑
i=1

(
Xi −

X1 + X2 + . . .+ Xn

n

)2

Is this estimator unbiased? That is, is E(Θ̂n) = σ2?
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Point Estimation
Maximum Likelihood Estimation

So far, we have looked at estimators for mean and variance. What if we
want to estimate the parameters of the random variable instead.

The maximum likelihood estimator selects parameters such that the prob-
ability of realizing the observed data is maximized.

For example, consider the Binomial random variable in which we toss a
coin n times. We do not know if our coin is unbiased and suppose we want
to determine p.

If k out of the n trials result in H, it is natural to suppose k/n is the
probability of H.
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Point Estimation
Maximum Likelihood Estimation

Let’s now derive this result using the idea of maximizing the likelihood.
Suppose p is unknown and we observed k Hs from n trials.

The probability of observing k heads is given by

L(p) =

(
n

k

)
pk(1− p)n−k

We now maximize this probability assuming p is the unknown or the deci-
sion variable.

dL
dp

=

(
n

k

)
[k(1− p)n−kpk−1 − pk(n − k)(1− p)n−k−1] = 0

Solving this we get p = k/n
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Point Estimation
Maximum Likelihood Estimation

Consider another example of estimating the parameter of a Poisson random
variable. Suppose that in different one-hour intervals there are 3, 5, 1, 2,
and 8 arrivals at an ATM. What is the average rate of arrivals λ?

Given a λ, the probability of observing 3 arrivals is

λ3e−λ

3!

What is the probability of observing the data, i.e., observing 3, 5, 1, 2,
and 8 arrivals.

L(λ) =
λ3e−λ

3!

λ5e−λ

5!

λ1e−λ

1!

λ2e−λ

2!

λ8e−λ

8!

We now select a λ which maximizes the above probability.
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Point Estimation
Maximum Likelihood Estimation

Maximum likelihood estimation always involves maximization of probabili-
ties. For a larger data set this would lead to more complex expressions for
the objective.

Instead, we take the logarithm of it and maximize the log-likelihood. Such a
transformation does not change the optimal solution since the log function
is strictly increasing.

LL(λ) = ln
λ3e−λ

3!

λ5e−λ

5!

λ1e−λ

1!

λ2e−λ

2!

λ8e−λ

8!
= 19 lnλ− 5λ− Constant

Hence, the optimal λ is 19/5. This is also the point estimate of the mean!

Lecture 10 Statistical Estimation



19/28

Point Estimation
Maximum Likelihood Estimation

For continuous random variables, we use the PDF function at each data
point and multiply them to derive the likelihood function.

As an example, suppose we want to estimate the parameters µ and σ of a
lognormal distribution. Assume that we observe realizations x1, x2, . . . , xn.

The likelihood objective can then be written as

L(µ, σ) =
n∏

i=1

1

xiσ
√

2π
exp

(
− (ln xi − µ)2

2σ2

)

The log-likelihood takes the form

LL(µ, σ) =
n∑

i=1

ln

(
1

xiσ
√

2π
exp

(
− (ln xi − µ)2

2σ2

))
The objective is to thus maximize LL(µ, σ) by changing both µ and σ
subject to σ > 0.
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Lecture Outline

Interval Estimation
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Interval Estimation
Introduction

We have discussed methods to estimate the mean of a random variable
using samples by constructing a realization of an estimator.

If we selected another set of samples, it is very likely that our estimate of
the mean is going to be different.

Using sample data is also possible to provide an interval which might
contain the mean with a certain degree of confidence.
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Interval Estimation
Introduction

Consider the following example for reference. Assume that we wish to
estimate the mean income of individuals in Bangalore.

The exact answer involves collecting data from everyone in the city, which
is clearly prohibitive.

Instead, suppose we sample individuals and ask them their income and
take its average. How close or far is this from the true population mean?
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Interval Estimation
Confidence Interval

For the simple case of finding a confidence interval for the mean, using
CLT, we know that

X1 + . . .+ Xn − nµ

σ
√
n

converges to the standard normal in distribution. Hence, from standard
normal tables,

P
(
− 1.96 ≤ X1 + . . .+ Xn − nµ

σ
√
n

≤ 1.96
)

= 0.95

P
(

Θ̂n − 1.96
σ√
n
≤ µ ≤ Θ̂n − 1.96

σ√
n

)
= 0.95

The RHS is written as 1 − α, where α = 0.05 and the interval [Θ̂n −
1.96 σ√

n
, Θ̂n+1.96 σ√

n
] is described as the 100(1−α)% Confidence Interval

for the mean.
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Interval Estimation
Example

To estimate the confidence interval, we need to know the variance of the
random variable which may not be available.

For large n (typically greater than 40), the variance can be replaced with
its estimator which is the sample standard deviation as shown earlier.

Suppose, the sample average of income from 400 samples is |20,000 and
the standard deviation is |5,000. Calculate a 95% confidence interval for
the true population mean.
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Interval Estimation
Interpretation

From the following equation, confidence intervals are often interpreted that
the true population means lies in the CI with 95% probability.

P
(

Θ̂n − 1.96
σ√
n
≤ µ ≤ Θ̂n − 1.96

σ√
n

)
= 0.95

This interpretation is wrong since the
true population mean is not a random
variable. The right way to look at a
CI is that if we do this experiment by
considering another sample and con-
struct another CI and keep repeating
it, 95% of such intervals will contain
the true population mean.
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Lecture Outline

A Solution
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A Solution
Sampling Bias

Most statistical procedures face an issue called sampling bias. A sample
that is a good representation of the population is hard to find.

Thus, the process of selecting a sample for the estimator can skew the
parameter estimates.

The election polls were conducted mainly using telephones as it was conve-
nient to get large samples. However, in 1948 republicans were more likely
to have telephones than democrats!
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Your Moment of Zen
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