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Previously on Transportation Logistics

Integer Program Mixed Integer Program

Are ‘corner points’ solutions optimal? How does the convex hull of the

MIP problem look like?
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Previously on Transportation Logistics

Most methods for solving integer programs rely on relaxations and LP
solutions.

An ideal LP relaxation coincides with the convex hull of feasible points.

(Why?)
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Previously on Transportation Logistics

Consider an undirected graph G = (V ,E ). A matching M ⊆ E is a set of
disjoint edges (edges that do not have a node in common). A node cover
is a set N ⊆ V such that every edge has at least one end point in N.

1
4
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6
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8

Formulate the maximum cardinality matching and minimum cardinality
cover problems using the set cover/packing/partitioning framework.
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Previously on Transportation Logistics

Consider three formulations for the knapsack problem.

P1 = {x ∈ [0, 1]4 : 83x1 + 61x2 + 49x3 + 20x4 ≤ 100}
P2 = {x ∈ [0, 1]4 : 4x1 + 3x2 + 2x3 + 1x4 ≤ 4}
P3 = {x ∈ [0, 1]4 : 4x1 + 3x2 + 2x3 + 1x4 ≤ 4, x1 + x2 + x3 ≤ 1, x1 + x4 ≤ 1}

Do all of these formulations contain the same set of integer solutions? Can
you order them on the basis of the strength of the formulations? How are
their LP relaxation solutions ordered?
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Previously on Transportation Logistics

min problem max problem
ith constraint ≥ ↔ ith variable ≥ 0
ith constraint ≤ ↔ ith variable ≤ 0
ith constraint = ↔ ith variable is unrestricted
jth variable ≥ 0 ↔ jth constraint ≤
jth variable ≤ 0 ↔ jth constraint ≥

jth variable is unrestricted ↔ jth constraint =

Use the above rules and write the dual of the following primal LP:

max 8x1 + 3x2 − 2x3

s.t. x1 − 6x2 + x3 ≥ 2

5x1 + 7x2 − 2x3 = −4

2x1 − 3x2 + 3x3 ≤ 3

x1 ≤ 0, x2 ≥ 0, x3 unrestricted
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Lecture Outline

1 Valid Inequalities

2 Chávtal-Gomory Inequalities

3 Graph-Based Valid Inequalities

4 Cover Inequalities

5 Disjunctive Inequalities and Mixed Integer Rounding
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Lecture Outline

Valid Inequalities
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Valid Inequalities
Introduction

Suppose the constraint space X of a MIP contains vectors (x, y) which
satisfy

Ax + Gy ≤ b

y ∈ Rn
+, x ∈ Zp

+

If the values in A, G, and b are rational, it is possible to find a convex hull

Conv(X ) = {(x, y) ∈ R(n+p)
+ : Aconvx + Gconvy ≤ bconv}

The idea behind studying valid inequalities is to get hyperplanes that are
closer to the convex hull.
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Valid Inequalities
Definition

Definition

An inequality wTx ≤ w0 is a valid inequality for X ⊆ Rn if
wTx ≤ w0 ∀ x ∈ X . A valid inequality is also denoted as (w,w0).

Valid inequalities are usually grouped into families based on how they are
identified. While there are general results that hold across all IP problems,
much of the theory is best understood using examples.

We will see in subsequent lectures that not all valid inequalities are useful.
Those that are closest to the convex hull will help discover an optimum
solution faster.
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Valid Inequalities
Examples

Sketch the feasible region for the following examples and construct appro-
priate valid inequalities. Assume M, b > 0.

I X =
{

(x , y) : x ≤ My , 0 ≤ x ≤ b, y ∈ {0, 1}
}

I X =
{

(x , y) : x ≤ My , 0 ≤ x ≤ b, y ∈ Z+

}
I X = {x : x ≤ b, x ∈ Z+}

How many valid inequalities can you construct for each of the above sets?
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Valid Inequalities
Examples

Can you identify valid inequalities for the following set?

X = {x ∈ [0, 1]5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}

If x2 and x4 are zero, then, the LHS cannot be ≤ −2. Hence, we can
impose the constraint x2 + x4 ≥ 1.

Can x1 = 1 and x2 = 0? This suggest that we can add another valid
inequality x1 ≤ x2.

The above example shows that we have to logically answer what if ques-
tions to arrive at these valid inequalities. This is also referred to as probing
and is sometimes used during the preprocessing phase.
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Valid Inequalities
Examples

Construct a valid inequality for a polyhedron described by the following
inequalities:

−7x1 + 3x2 ≤ 0

−2x1 − 3x2 ≤ −6

3x1 − 2x2 ≤ 6

−2x1 + 3x2 ≤ 9

−2x1 − 3x2 ≤ 17

x1, x2 ≥ 0

What are the inequalities that describe the convex hull? What would you
get if you multiplied the inequalities with (2,0,1,0,0) and added them? Is
the resulting inequality valid?
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Valid Inequalities
Examples

Let X = {x ∈ Rn
+ : xA ≤ b}. Non-negative linear combinations of the

constraints, λTA ≤ λTb generate valid inequalities of P.

0 2 4
0

2

4

Subtracting a positive quantity from the LHS and adding a positive quan-
tity to the RHS will keep the inequality valid. Hence λTAx − µTx ≤
λTb− d , for λ ∈ Rm

+,µ ∈ Rn
+, d ≥ 0.
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Valid Inequalities
Examples

How do you check if a given inequality, e.g., −11x1 + 4x2 ≤ 6 is valid?

Proposition

An inequality wTx ≤ w0 is a valid inequality for
X = {x : Ax ≤ b, x ≥ 0} ⇔ ∃ y ≥ 0, such that
ATy ≥ w and bTy ≤ w0.

Ax ≤ b
x ≥ 0

w

Proof.

wTx ≤ w0 is a valid inequality ⇔

w0 ≥max wTx

s.t. Ax ≤ b

x ≥ 0

The dual problem of the above LP is min bTy s.t., ATy ≥ w, y ≥ 0. �
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Lecture Outline

Chávtal-Gomory Inequalities
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Chávtal-Gomory Inequalities
Introduction

Chávtal-Gomory inequalities generalize the observations made in the earlier
examples and combine it with rounding methods.

They were originally proposed by Chávtal, but they are closely related to
Gomory’s cuts which will be discussed in subsequent lectures.

Consider the set X = {x ∈ Rn
+ : Ax ≤ b}, where A ∈ Rm×n

+ and λ ≥ 0.
Recall that the following inequality is valid for X .

m∑
i=1

λiAi.x ≤
m∑
i=1

λibi

Lecture 9 Valid Inequalities



18/45

Chávtal-Gomory Inequalities
Introduction

The inequality can also be written as

n∑
j=1

λTA.jxj ≤ λTb

Since, x ≥ 0, rounding the coefficients still makes it a valid inequality for
X

n∑
j=1

bλTA.jcxj ≤ λTb

Finally, the following inequality is valid for X ∩ Zn
+ since the variables are

integral.
n∑

j=1

bλTA.jcxj ≤ bλTbc

What if we had a mixed integer program? Choose λ such that λTÂ ≥ 0
and apply the above steps for the integer variables.
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Chávtal-Gomory Inequalities
Introduction

Apply the CG procedure for the earlier example using λ = (7/30, 0, 0, 1/10, 0).

−49

30
x1 +

7

10
x2 ≤ 0

− 2

10
x1 +

3

10
x2 ≤

9

10

Adding the above inequalities,

−55

30
x1 + x2 ≤

9

10
0 2 4

0

2

4

Rounding the LHS and RHS, we get −2x1 + x2 ≤ 0, which is one of the
inequalities describing the convex hull.
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Chávtal-Gomory Inequalities
Introduction

One can create new valid inequalities using the valid inequalities generated
from previous rounds.

Proposition

Every valid inequality of X for pure integer programs can be derived from
repeated application of Chávtal-Gomory for a finite number of times.
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Chávtal-Gomory Inequalities
Examples

Consider the matching problem using the set packing formulation. The
constraints are of the form x(δ(i)) ≤ 1 ∀ i ∈ V .

1
4

9

6

2
5

3

7

8

What is the maximum number of
edges within a set S containing 3
nodes, i.e., what is x(E (S))?

What if S contained 5 nodes? Odd
number of nodes?

The following is a valid inequality, also called the odd cut inequalities, if
S has odd cardinality. ∑

e∈E(S)

xe ≤
|S | − 1

2
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Chávtal-Gomory Inequalities
Examples

We can arrive at the same result using CG inequalities. Consider the
x(δ(i)) ≤ 1 ∀ i ∈ V constraints of the matching problem.

Set the weights to 1/2 for the constraints associated with nodes in S and
0 otherwise.

x(E (S)) +
1

2
x(δ(S ,Sc)) ≤ |S |

2

Since x(δ(S ,Sc)) ≥ 0, we can conclude that x(E (S)) ≤ |S|2 . As the LHS

is fractional, we can round the RHS to get x(E (S)) ≤ b |S|2 c. If |S | is odd,
we can thus write ∑

e∈E(S)

xe ≤
|S | − 1

2

Lecture 9 Valid Inequalities



23/45

Lecture Outline

Graph-Based Valid Inequalities
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Graph-Based Valid Inequalities
Set Packing Polytope

Many graph-based problems have specialized valid inequalities that are
specific to the problem structure.

Consider a node packing problem in
which the goal is to select a subset of
vertices but no two chosen vertices
must be connected by an edge.

The feasible region is X = {x ∈
[0, 1]n : xi + xj ≤ 1 ∀ {i , j} ∈ E}.
Can you construct valid inequalities
for this set?

1
4

9

6
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5

3

7
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Lecture 9 Valid Inequalities



25/45

Graph-Based Valid Inequalities
Set Packing Polytope

For every clique C in the graph, only one of the nodes can be active. For
example, the valid inequality from C = {1, 4, 6} is

x1 + x4 + x6 ≤ 1

Can you spot other clique inequalities?

Note that C = {1, 2, 4, 6} is a maximal clique. That is, it cannot be
extended to another clique by adding another vertex.

Clique inequalities using maximal cliques are stronger than those from the
sub-cliques. (Why?)
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Graph-Based Valid Inequalities
Set Packing Polytope

Like the matching problem, we can use subsets of nodes with odd cardi-
nality to create other valid inequalities.

Of special interest is the odd hole inequalities which are defined by H ⊂ V
and |H| ≥ 5 for which H is a “chordless” cycle.

For example, H = {5, 9, 8, 3, 7} is an odd hole. H = {1, 2, 7, 5, 6} is a
cycle of length 5 but has chords (2, 6) and (2, 5).

If H is an odd hole then the following inequality is valid∑
i∈H

xi ≤
|H| − 1

2
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Graph-Based Valid Inequalities
Conflict Graphs

The ideas seen in the probing example and the clique inequalities can be
applied to other problems involving binary variables.

Consider two binary variables xi and xj . There are four logical relationships
between them.

xi = 1⇒ xj = 1⇔ xi + xj ≤ 1

xi = 0⇒ xj = 0⇔ (1− xi ) + xj ≤ 1

xi = 1⇒ xj = 1⇔ xi + (1− xj) ≤ 1

xi = 0⇒ xj = 1⇔ (1− xi ) + (1− xj) ≤ 1
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Graph-Based Valid Inequalities
Conflict Graphs

One can create valid inequalities using a conflict graph in which each
variable is represented by two nodes i and ī , indicating xi and (1 − xi ),
respectively.

We add edges between nodes if both of them cannot be one at the same
time. Construct a conflict graph for the following inequalities.

xi + (1− xj) ≤ 1

xi + xk ≤ 1

(1− xj) + xk ≤ 1

𝑖 𝑗 𝑘

ҧ𝑖 ത𝑘ҧ𝑗
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Graph-Based Valid Inequalities
Conflict Graphs

Using the notion of conflict graphs, we can derive valid inequalities for the
set-packing polytope Ax = 1 that we saw in VRPs and crew scheduling.

Two variables, xi and xj , cannot both be 1 if there is a customer common
to both routes. In other words, A.i and A.j have at least one 1 in the same

position, i.e., AT
.iA.j > 0.

A conflict graph can be constructed with nodes as routes and edges connect
two routes if they cannot both be 1. Clique inequalities in this graph are
valid for the set packing polytope.
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Lecture Outline

Cover Inequalities
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Cover Inequalities
0-1 Knapsack Set

Consider the Knapsack constraint X = {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b}. Let
N = {1, . . . , n}. Assume that b > 0 and aj > 0 for all j. Is this restrictive?

Definition (Cover)

A set C ⊆ N is a cover/dependent set if
∑

j∈C aj > b. A cover is
minimal if C\{j} is not a cover or any j ∈ C .

Determine all covers of 2x1 + 5x2 + 3x3 + x4 ≤ 6.

I Which of these are minimal?

I What kind of valid inequalities are implied by covers?
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Cover Inequalities
0-1 Knapsack

Proposition

If C ⊆ N is a cover for X , then
∑

j∈C xj ≤ |C | − 1 is valid for X .

Proof.

We prove using the contraposition. Suppose a x∗ does not satisfy the
cover inequality. Then,

∑
j∈C x∗j > |C | − 1, which implies that

x∗j = 1 ∀ j ∈ C . ∑
j∈N

ajx
∗
j =

∑
j∈C

aj +
∑

j∈N\C

ajx
∗
j > b

Hence, x∗ /∈ X . �

These valid inequalities are also referred to as knapsack 0-1 inequalities.
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Cover Inequalities
Mixed 0-1 Sets

Flow cover inequalities are valid for mixed 0-1 sets of the following form

X =

{
(x, y) ∈ Rn

+ × {0, 1}n :
∑
j∈N1

xj −
∑
j∈N2

xj ≤ b,

xj ≤ ajyj ∀ j ∈ N1 ∪ N2

}
The y variables are binary and indicate if the link is allowed to carry flow
or not. as can be viewed as capacities.

i

b

N1 N2

The knapsack problem is a special case of this with N2 = ∅ and xj = ajyj .
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Cover Inequalities
Mixed 0-1 Sets

Definition (Generalized Cover)

A set C = C1 ∪ C2 where C1 ⊆ N1 and C2 ⊆ N2, is a generalized cover
for X if

∑
j∈C1

aj −
∑

j∈C2
aj > b.

The difference λ =
∑

j∈C1
aj −

∑
j∈C2

aj −b > 0 is called the cover excess.

Identify a generalized cover in the following example.

X =
{

(x, y) ∈ R6
+ × {0, 1}6 :x1 + x2 + x3 − x4 − x5 − x6 ≤ 4,

x1 ≤ 3y1, x2 ≤ 3y2

x3 ≤ 6y3, x4 ≤ 3y4

x5 ≤ 5y5, x6 ≤ y6
}
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Cover Inequalities
Mixed 0-1 Sets

Proposition

Let L2 ⊆ N2 \ C2. Then, the following inequality is valid for X .∑
j∈C1

xj +
∑
j∈C1

(aj −λ)+(1− yj)−
∑
j∈C2

aj −λ
∑
j∈L2

yj −
∑

j∈N2\(C2∪L2)

xj ≤ b

where a+ = max{a, 0}.

Apply the above result to develop a valid inequality for the previous example
using C1 = {1, 3},C2 = {4}, and L2 = {5}.
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Lecture Outline

Disjunctive Inequalities and MIR
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Disjunctive Inequalities and MIR
Introduction

Consider a disjunction X = X1∪X2, where X1,X2 ⊂ Rn
+. We encountered

such feasible regions in problems in either-or-or type constraints.

X1 = {x ∈ R2
+ :− x1 + x2 ≤ 1,

x1 + x2 ≤ 5}

X2 = {x ∈ R2
+ :x2 ≤ 4,

− 2x1 + x2 ≤ −6

− 3x2 ≤ −2}

Can you identify a valid inequality in the above example? Note that a valid
inequality of X is valid for X1 and X2 but not vice versa.
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Disjunctive Inequalities and MIR
Introduction

Disjunction sets also appear in the Branch and Bound-type decomposition.
Suppose X = {x ∈ Rn

+ : Ax ≤ b}.

X1 = X ∩ {x ∈ Rn
+ : x1 ≤ bdc}

X2 = X ∩ {x ∈ Rn
+ : x1 ≥ bdc}
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Disjunctive Inequalities and MIR
Introduction

Proposition

Let Xi = {x ∈ Rn
+ : Aix ≤ bi} for i = 1, 2. If (w1,w1

0 ) is valid for X1 and
(w2,w2

0 ) is valid for X2, then the following inequality is valid for
X = X1 ∪ X2

n∑
j=1

min{w1
j ,w

2
j }xj ≤ max{w1

0 ,w
2
0 }

Proof.

(WTS) x ∈ X satisfies the given valid inequality. Since x ∈ X1 or x ∈ X2,

n∑
j=1

w1
j xj ≤ w1

0 or
n∑

j=1

w2
j xj ≤ w2

0
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Disjunctive Inequalities and MIR
Introduction

Contd.

min{w1
j ,w

2
j } ≤ w1

j and min{w1
j ,w

2
j } ≤ w2

j for all j = 1, . . . , n. Since all
xs are ≥ 0,

n∑
j=1

min{w1
j ,w

2
j }xj ≤

n∑
j=1

w1
j xj ≤ w1

0

or
n∑

j=1

min{w1
j ,w

2
j }xj ≤

n∑
j=1

w2
j xj ≤ w2

0

Thus,
∑n

j=1 min{w1
j ,w

2
j }xj ≤ max{w1

0 ,w
2
0 }. �
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Disjunctive Inequalities and MIR
Introduction

How do you check if a given inequality (w,w0) is valid for a disjunction
X = X1 ∪ X2? Solve the following LPs for i = 1, 2.

zi ≥max wTx

s.t. Aix ≤ bi

x ≥ 0

(w,w0) is valid for X ⇔ w0 ≥ max{z1, z2}. This condition is equivalent
to the existence of y1, y2 ≥ 0, such that AiTyi ≥ w and biTyi ≤ w0 for
i = 1, 2.
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Disjunctive Inequalities and MIR
Rounding

As before, non-negative linear combinations of MIP constraints yield valid
inequalities. These are not very useful to get closer to the convex hull. As
done in the case of the pure integer version, we can round certain terms.

To motivate this, consider the mixed-integer
set X = {(x , y) ∈ Z+ × R+ : x − y ≤ b}.
Sketch the feasible region and show that

x − 1

1− f0
y ≤ bbc

is valid for X where f0 = b − bbc.

Can you spot the disjunction? x1 ≤ bbc or x1 ≥ bbc+ 1.

Derive the valid inequality using a non-negative combination of these con-
straints. In the second case use f0

1−f0 and 1
1−f0 on the new and the linear

constraint. Why not round all the continuous terms?
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Disjunctive Inequalities and MIR
Rounding

The idea we just saw can be generalized to any mixed integer inequality.

Proposition

Let X = {x ∈ Zn
+, y ∈ Rp

+ :
∑

j∈N ajxj +
∑

j∈J gjyj ≤ b}, where
N = {1, . . . , n}, J = {1, . . . , p}, and aj , gj , b ∈ R for all j . Then,∑

j∈N

bajcxj +
1

1− f0

∑
j∈J<0

gjyj ≤ bbc

is valid for X , where J<0 = {j ∈ J : gj < 0}, f0 = b − bbc.

Proof.

Case I: Let
∑

j∈J gjyj > f0 − 1∑
j∈N

bajcxj ≤
∑
j∈N

ajxj ≤ b −
∑
j∈J

gjyj < b − (f0 − 1) = bbc+ 1
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Disjunctive Inequalities and MIR
Rounding

Proof.

But
∑

j∈Nbajcxj is integral, hence∑
j∈N

bajcxj < bbc+ 1⇒
∑
j∈N

bajc ≤ bbc

Note that (1− f0) ∈ (0, 1]. How do we get the valid inequality from here?

Case II: Let
∑

j∈J gjyj ≤ f0 − 1⇒
∑

j∈J<0
gjyj ≤ f0 − 1

∑
j∈N

bajcxj +
1

1− f0

∑
j∈J<0

gjyj ≤
∑
j∈N

ajxj +
1

1− f0

∑
j∈J<0

gjyj

= b −
∑
j∈J

gjyj +
1

1− f0

∑
j∈J<0

gjyj

≤ b +
f0

1− f0

∑
j∈J<0

gjyj ≤ bbc
�
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Your Moment of Zen

Source:glasbergen.com
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