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Previously on Transportation Logistics

Consider a set S = {1, . . . ,m}. Let S = {S1,S2, . . . ,Sn} be a collection
of subsets of S . These subsets could for instance satisfy some property.

I A collection X ⊆ S is a cover of S if ∪Si∈XSi = S

I X is a packing if Si ∩ Sj = ∅ ∀Si ,Sj ∈ X

I X is a partition if it is both a cover and a packing.

E.g., Let S = {1, 2, 3, 4, 5}. What are the members of S if every element
of it has a cardinality of at least 2?

Set Cover Set Packing Set Partitioning

Construct an example of a cover, packing, partition for the above example?
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Previously on Transportation Logistics

Let yi be 1 if bin i is used and is 0 otherwise. Let xij take a value 1 if item
j is assigned to bin i and is 0 otherwise.

max
n∑

i=1

yi

s.t.
n∑

j=1

wjxij ≤ cyi ∀i = 1, . . . , n

n∑
i=1

xij = 1 ∀j = 1, . . . , n

yi ∈ {0, 1} ∀i = 1, . . . , n

xij ∈ {0, 1} ∀i = 1, . . . , n, j = 1, . . . , n

The first constraint is an example of forcing constraints of the type x ≤
My , where one of the variables is allowed to take a non-negative quantity
only if the other is active.
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Previously on Transportation Logistics

For directed graphs, the shorthand A-δ notation can be extended by addi-
tionally defining the following symbols

I δ+(S): Set of arcs with tail node in S and head node in Sc .

I δ−(S): Set of arcs with tail node in Sc and head node in S .

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 ∀ i ∈ N

x(δ−(i)) = 1 ∀ i ∈ N

x(A(S)) ≤ |S | − 1 ∀ S ⊂ N,S 6= ∅, |S | ≥ 2

xij ∈ {0, 1} ∀ (i , j) ∈ A

The SEC constraint can be replaced with x(δ+(S)) + x(δ−(S)) ≥ 2. How
many variables and constraints are present in this DFW formulation?
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Previously on Transportation Logistics

Alternately, Miller, Tucker, and Zemlin’s model (MTZ) can be used which
keeps track of ui which is the sequence in which city i is visited. Wlog, let
node 1 be the origin of the tour, i.e., u1 = 1.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 ∀ i ∈ N

x(δ−(i)) = 1 ∀ i ∈ N

ui − uj + 1 ≤ (n − 1)(1− xij) ∀ i , j ∈ {2, . . . , n}, i 6= j

2 ≤ ui ≤ n ∀ i ∈ N\{1}
xij ∈ {0, 1} ∀ (i , j) ∈ A

What happens to the SEC when xij equals 1 and 0? Note: The SEC
constraint appears in slightly different formats in different papers.
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Previously on Transportation Logistics

In the TSPTW, each city i in a directed graph G = (N,A) has an asso-
ciated time window [ai , bi ] within which it must be visited. Suppose the
travel time to go from i to j is tij .

The traveler can reach early, in which case they wait till the start of the
time window. Suppose 0 is the starting city and yi is the time at which
customer i is visited, then the TSPTW can be formulated as

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 ∀ i ∈ N

x(δ−(i)) = 1 ∀ i ∈ N

yj ≥ yi + tij −M(1− xij) ∀ i , j ∈ N, j 6= 0

ai ≤ yi ≤ bi ∀ i ∈ N

xij ∈ {0, 1} ∀ (i , j) ∈ A
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Lecture Outline

1 Vehicle Routing Problem

2 Variants
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Lecture Outline

Vehicle Routing Problem
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Vehicle Routing Problem
Introduction

The VRP involves serving a set of customer demands at different locations
using a vehicle fleet located at one or more depots.

Assume all vehicles are homogeneous and have the same capacity. Consider
a graph G = (N,A). Let N = {0, 1, . . . , n}, where 0 is the depot and
vertices 1 to n are customer locations.

The cost of traversing an edge (i , j) is cij . Customer i ’s demand is denoted
by di and a set of vehicles K each with capacity C ≥ di ,∀i ∈ V \{0} are
assumed to be available.

The goal is to find a partition of customers S1, . . . ,S|K | and the routes
taken by a vehicle that serves each partition to minimize the overall cost.
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Vehicle Routing Problem
Greatest Hits

Balinski and Quandt (1964)

Gillett and Miller (1974)

Christofides et al. (1981)

Dantzig and Ramser (1959)

Laporte, Mercure, and Nobert (1986)

Desrochers, Desrosiers, and Solomon (1992)
Feillet et al. (2004)

Cornuejols and Harche (1994)

Clarke and Wright (1964)
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Vehicle Routing Problem
Formulations

Most common formulations for the capacitated vehicle routing problem
(CVRP) are

I Two-index formulation

I Three-index formulation

I Commodity flow formulation

I Set-Partitioning models

The first two formulations are also referred to as vehicle-flow formulations.
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Vehicle Routing Problem
Formulations

Let r(S) as the minimum number of vehicles required to serve the demand
of a subset of customers S ⊆ N\{0}.
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Suppose the capacity of the truck in the above example is 100. What is
r({3, 4, 6})?

Solve a bin-packing problem with S as the set of items and |S | bins, each
with capacity C . A lower bound for r(s) is d

∑
i∈S di/Ce (Why?).

Lecture 6 Vehicle Routing Problem



13/39

Vehicle Routing Problem
Two-index Formulation

The two-index formulation keeps track of binary variables xij which is 1 if
arc (i , j) is used and is 0 otherwise.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(0)) = x(δ−(0)) = |K |
x(δ+(i)) = 1 ∀ i ∈ N\{0}
x(δ−(i)) = 1 ∀ i ∈ N\{0}
x(δ+(S)) ≥ r(S) ∀S ⊆ N\{0},S 6= ∅
xij ∈ {0, 1} ∀ (i , j) ∈ A

The fourth constraint, also called as the capacity-cut constraints (CCC)
addresses both capacity limits as well as prevents sub-tours.
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Vehicle Routing Problem
Two-index Formulation

Verify that the following solutions violate the cut-capacity constraints.
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It can be also reformulated in the following form familiar SEC constraint
form which imply that at least r(S) arcs/vehicles must go out of S .

x(A(S)) ≤ |S | − r(S) S ⊆ N\{0},S 6= ∅

Can you show that this is equivalent to CCC? Use the fact that the number
of arcs in a solution is n + |K |.
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Vehicle Routing Problem
Two-index Formulation

What if some of the vehicles are unused? If |K | > r(N \ {0}), then we
can replace the first inequality with ≤. Does having more vehicles than
needed imply that the objective is higher?

One can also add fixed costs to the problem by introducing costs for the
edges out of the depot.

Excess vehicles can also be routed outside the network. That is, create
two node for the depot 0 and n+ 1 and connect them by a zero cost edge.
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Vehicle Routing Problem
Two-index Formulation

Just as in TSP, the SEC constraints can also be modeled using MTZ
constraints

di ≤ ui ≤ C ∀ i ∈ N \ {0}
ui − uj + dj ≤ C (1− xij) ∀ (i , j) ∈ A(N\{0}) : di + dj ≤ C

where ui is a continuous variable which represents the load on a vehicle
after visiting customer i .

How are sub-tour constraints met? Note that if xij = 1, uj > ui . What
happens if you had a sub-tour i1, i2, . . . , i1?

As before, the LP relaxations of the MTZ version are often weak.
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Vehicle Routing Problem
Two-index Formulation

Two-index formulation uses fewer variables. Its solutions are also unique
unlike the subsequent models in which multiple solutions can be generated
by re-numbering vehicles.

But it does not tell us which vehicle travels on which link. This is a problem
if vehicle fleet is heterogeneous or if the cost depends on vehicle type (i.e.,
capacities are different, or some are EVs).
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Vehicle Routing Problem
Three-index Formulation

In this formulation, xijk is 1 if vehicle k uses link (i , j) and yik is 1 if
customer i is served by vehicle k .

min
∑

(i,j)∈A

∑
k∈K

cijkxijk

s.t.
∑

k∈K y0k = |K |∑
k∈K yik = 1 ∀i ∈ N\{0}

xk(δ+(i)) = xk(δ−(i)) = yik ∀ i ∈ N, k ∈ K∑
i∈N diyik ≤ Ck ∀ k ∈ K

xk(δ+(S)) ≥ yhk ∀S ⊆ N\{0}, h ∈ S , k ∈ K

yik ∈ {0, 1} ∀ i ∈ N, k ∈ K

xijk ∈ {0, 1} ∀ (i , j) ∈ A, k ∈ K

Verify that the capacity and SEC constraints are violated for the earlier

examples.
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Vehicle Routing Problem
Three-index Formulation

The SECs can also be written as

xk(A(S)) ≤ |S | − 1 ∀ S ⊆ N \ {0}, |S | ≥ 2, k ∈ K

which implies that at least one arc leaves the set S .

These exponential number of constraints can also be replaced by the fol-
lowing MTZ constraints.

di ≤ uik ≤ Ck ∀ i ∈ N \ {0}, k ∈ K

uik − ujk + dj ≤ Ck(1− xijk) ∀ (i , j) ∈ A(N \ {0}) : di + dj ≤ Ck , k ∈ K

All the above formulations can be written for the symmetric version.
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Vehicle Routing Problem
Set-Partitioning Formulation

Suppose J is a set of tours which are feasible (satisfy capacity constraints).
Let aij be 1 if tour j visits customer i and is 0 otherwise.

Define cj as the cost of the tour and xj as a binary variable which is 1 if
tour j is chosen.

min
∑
j∈J

cjxj

s.t.
∑
j∈J

xj = |K |

∑
j∈J

aijxj = 1 ∀ i ∈ V \{0}

xj ∈ {0, 1} ∀ j ∈ J
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Vehicle Routing Problem
Set-Partitioning Formulation

The advantage of this formulations is that the cost of a tour need not be
equal to the sum of constituent link costs. It can also depend on the order
of customers visited.

The set-partitioning model can be naturally extended to problems with
time windows since they are not explicitly modeled.

The SPP formulation tends to have strong LP relaxations. However, the

number of variables in this model is exponential and requires the use of

column generation to solve the LP relaxations.
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Vehicle Routing Problem
Set-Partitioning Formulation

If the costs satisfy triangle inequality, the problem can be formulated as a
covering problem.
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∑
j∈J

aijxj ≥ 1 ∀ i ∈ V \{0}

The solution can be repaired by adding a short-cut (7,9) or (5,0).

The advantage of using the covering version is that the feasible tours can
be replaced with maximal-feasible tours. For example, we need not have
tours 0-4-0, 0-4-10-0, and 0-4-10-5-0, in the above example.

Further, the dual space is more constrained for the covering problem.
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Lecture Outline

Variants
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Variants
VRP with Time Windows (VRPTW)

In the VRP with time windows, each customer has a time window [ai , bi ]
within which they must be served. If i is reached early, the vehicle must
wait till the start time of the time window.

In addition to the demand, a service time of customer i is si units. The
travel time between customer pair (i , j) is denoted as tij .

Assume that we have a copy of the depot 0, n + 1. That is, N =
{0, 1, . . . , n, n + 1}. We set d0 = s0 = dn+1 = sn+1 = c0,n+1 = t0,n+1 = 0.

Note that an arc can be deleted if ai +si +tij > bj or if di +dj > maxk∈K Ck .
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Variants
VRP with Time Windows (VRPTW)

Let decision variable wik indicate the start time of service at customer i by
vehicle k .

min
∑
k∈K

∑
(i,j)∈A

cijkxijk

s.t.
∑

k∈K xk(δ+(i)) = 1 i ∈ N\{0, n + 1}
xk(δ+(0)) = 1 ∀ k ∈ K

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ N\{0, n + 1}, k ∈ K

xk(δ−(n + 1)) = 1 ∀ k ∈ K

wjk ≥ wik + si + tij −Mij(1− xijk) ∀ k ∈ K , (i , j) ∈ A

ai ≤ wik ≤ bi ∀ k ∈ K , i ∈ N∑
i∈N dixk(δ+(i)) ≤ Ck ∀ k ∈ K

xijk ∈ {0, 1} ∀ (i , j) ∈ A, k ∈ K

What is a good choice of Mij? bi + si + tij − aj .
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Variants
VRP with Pickup, Dropoff, and Time Windows (VRPPDTW)

Vehicle fleet must serve requests, each of which has a pick-up and a drop-
off locations. The demand could be goods/people (think Swiggy and Ola).

The problem involving people is also called Dial-a-Ride-Problem (DARP).
The constraints include visiting each pickup and dropoff node just once
and the pickup must precede the dropoff.
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Variants
VRP with Pickup, Dropoff, and Time Windows (VRPPDTW)

Each request is represented by a pick-up node i and a drop-off node n+ i .
The set of pick-up and drop-off nodes are indicated by P = {1, 2, . . . , n}
and D = {n + 1, n + 2, . . . , 2n}, respectively.
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We assume that there are |K | vehicles, where the kth vehicle has an origin
ok and destination dk . N = P ∪ D ∪k∈K {ok , dk}. Vehicles are assumed
to have a capacity Ck .
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Variants
VRP with Pickup, Dropoff, and Time Windows (VRPPDTW)

The decision variables for this model include the xijk variables which is 1
if vehicle k uses link (i , j) and is 0 otherwise.

The time at which vehicle k starts service at i is recorded by wik . The load
on vehicle k after visiting node i is indicated by qik .

min
∑

(i,j)∈A

∑
k∈K

cijkxijk

s.t.
∑
k∈K

xk(δ+(i)) = 1 i ∈ P

xk(δ+(i)) = xk(δ−(n + i)) ∀i ∈ P, k ∈ K

xijk ∈ {0, 1} ∀ (i , j) ∈ A, k ∈ K
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Variants
VRP with Pickup, Dropoff, and Time Windows (VRPPDTW)

Flow must be conserved for each vehicle.∑
j∈P∪{dk}

xok jk = 1 ∀ k ∈ K

∑
j∈P∪D∪{dk}

xijk −
∑

j∈P∪D∪{ok}

xjik = 0 ∀ k ∈ K , i ∈ P ∪ D

∑
i∈D∪{ok}

xidkk = 1 ∀ k ∈ K

The time windows and precedence constraints must be satisfied.

wjk ≥ wik + si + tij −Mij(1− xijk) ∀ k ∈ K , (i , j) ∈ A

ai ≤ wik ≤ bi ∀ k ∈ K , i ∈ P ∪ D

wik + ti,n+1,k ≤ wn+1,k ∀ k ∈ K , i ∈ P
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Variants
VRP with Pickup, Dropoff, and Time Windows (VRPPDTW)

Finally, capacity constraints must be met.

qjk ≥ qik + di − Oij(1− xijk) ∀ k ∈ K , (i , j) ∈ A

dj ≤ qik ≤ Ck ∀ k ∈ K , i ∈ P

0 ≤ qn+i,k ≤ Ck − di ∀ k ∈ K , n + i ∈ D

In the case of DARP, one may also impose ride-time constraints to avoid
long detours.

Lecture 6 Vehicle Routing Problem



31/39

Variants
VRP with Backhauls (VRPB)

VRPs with backhauls involve both deliveries and pickups. Customers where
demand is dropped off are called linehaul customers and those where supply
is picked up are called backhaul customers.

Vehicles begin and end at the depot. Backhaul customers are served after
visiting all the linehaul customers to make within truck operations easier.

Capacity constraints can thus be applied to both set of customers inde-
pendently. The problem can be easily solved using the regular VRP model
by just modifying the network.
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Variants
VRP with Backhauls (VRPB)

The set of linehaul customers are denoted by L = {1, . . . , n}, and backhauls
by B = {n + 1, . . . , n + m}. Let N = L ∪ B ∪ {0}. As before, di is the
demand to be delivered or collected, where i ∈ L ∪ B.

The arc set can exclude the arcs from B to L and from 0 to B because of
the precedence constraints.

The minimum number of vehicles required can be found by solving two
separate bin packing problems involving L and B.

The CCCs are applied for subsets S ∈ L ∪ B. We define r(S) as the
minimum number of vehicles required to serve all customers in S even if
they are a mixture of linehaul and backhaul customers.
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Variants
Multi-Echelon VRP

In the 2-echelon variant (2E-CVRP), demand is first routed to satellites
which are smaller depots and then routed to customers.

A set of primary vehicles transport demand from the depot to the satel-
lites and secondary vehicles move them from satellites to customers. The
satellites can be served by one or more of the primary vehicles and has a
capacity.

Each customer, however, is assumed to be served by only one secondary
vehicle. The set of satellites is S and the set of customers is N. Depot is
indicated by 0.
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Variants
Multi-Echelon VRP

The arcs at the first level A1 comprise of connections from the depot to
the satellites and between the satellites.
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Arcs from the satellites to the customers and between customers are indi-
cated by A2.
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Variants
Multi-Echelon VRP

Assume that K1 and K2s denote the set of primary and secondary vehicles
from satellite s with capacities C1 and C2, respectively.

Define the decision variables as:

I xij which is 1 if the first level arc (i , j) is used and is 0 otherwise

I yijs which is 1 if the arc (i , j) is used from a vehicle starting at
satellites s

I zsi which is 1 if customer at i is served by satellite s.

Formulate the 2E-CVRP as a MILP.
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Variants
Location Routing Problem (LRP)

In LRP depot locations for vehicles are determined along with their routes
can improve efficiency and reduce the operating and fixed/leasing costs of
locating a facility.

Assumed that there are set of potential depot sites D. Opening a depot
at location i ∈ D costs fi .

Define variables that assign customer locations to depots using zij , which
is set to 1 if customer at j is served by vehicles starting from depot i .
Suppose the capacity of the depot is Wi .

The objective is to minimize the total cost of operations (transportation
and fixed costs)

min
∑

i∈N∪D

∑
j∈N∪D

∑
k∈K

cijxijk +
∑
i∈D

fiyi

Lecture 6 Vehicle Routing Problem



37/39

Variants
Location Routing Problem (LRP)

Each customer should be visited from another customer or from the depot
by exactly one vehicle. Vehicle entering a node will leave it. Vehicles can
begin from different depots due to the third constraint.∑

k∈K

∑
i∈N∪D

xijk = 1 ∀ j ∈ N∑
j∈N∪D

xijk −
∑

j∈N∪D

xjik = 0 ∀ k ∈ K , i ∈ N ∪ D

∑
i∈D

∑
j∈N

xijk ≤ 1 ∀ k ∈ K

Capacity and SEC constraints are enforced using the following inequalities.

xk(A(S)) ≤ |S | − 1 ∀S ⊆ N, k ∈ K∑
j∈N

∑
i∈N∪D

djxijk ≤ Ck ∀ k ∈ K

∑
j∈N

djzij ≤Wiyi ∀ i ∈ D
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Variants
Location Routing Problem (LRP)

The z and x variables are linked as shown below. If zij is zero, then both
xih and xgj terms cannot be 1, else some vehicle from depot i will serve
customer j .∑

h∈N

xihk +
∑

g∈N∪D\{j}

xgjk ≤ 1 + zij ∀ i ∈ D, j ∈ N, k ∈ K

Finally, the decision variables are required to be binary using

xijk ∈ {0, 1} ∀ i ∈ N ∪ D, j ∈ N ∪ D, k ∈ K

yi ∈ {0, 1} ∀ i ∈ D

zij ∈ {0, 1} ∀ i ∈ D, j ∈ N ∪ D
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Your Moment of Zen
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