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Previously on Transportation Logistics

Which of these two formulations are better? In such settings we make use
of the idea of projections to compare them on even footing.

Suppose relaxation of formulation P1 has decision
variables x ∈ P1 ⊆ Rn. Consider a new formulation
whose decision variables are of the type (x ,w) ∈
Q2 = X ×W ⊆ Rn × Rl .

We then define a projection of Q2 into the subspace Rn as follows

P2 = projx(Q2) = {x ∈ Rn : (x ,w) ∈ Q2 for some w ∈W }

The new formulation is better only if P2 ⊂ P1. Using the point xt = dt
and yt = dt/M can you comment on the strength of the two lot sizing
formulations?
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Lecture Outline

1 Traveling Salesman Problem

2 Variants
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Lecture Outline
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Traveling Salesman Problem
Introduction

The travelling salesman problem is one of the most celebrated examples of
integer programming.

You have to visit n cities starting from an origin and return to the origin.
Find the cheapest tour.

In addition to logistics, TSPs have been widely used in DNA sequencing
and PCB manufacturing.
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Traveling Salesman Problem
Introduction

https://www.math.uwaterloo.ca/tsp/concorde.html
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Traveling Salesman Problem
History

One of the earliest exact solutions for the TSP problem was proposed by Dantzig,
Fulkerson, and Johnson using 49 cities in the US.

Mahalanobis looked at empirical estimates of the objective as a function of
number of vertices in the late 30s in the context of surveying jute crops in
Bengal. He hypothesized that the cost of Euclidean instances is ∝

√
n.

Several breakthroughs followed in the next few decades. The pla85900 is a chip

design instance that was solved optimally in 2006.
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Traveling Salesman Problem
TSP Greatest Hits

Dantzig, Fulkerson, and Johnson (1956)

Little et al. (1963) Bellman, Held, Karp (1962)

Lin and Kernighan (1973)

Miller, Tucker, and Zemlin (1960)

Gomory (1958)

Helsgaun (2000)

Hong (1972) Grotschel and Padberg I & II (1979)

Padberg and Hong (1980)Padberg and Rao (1982)

Padberg and Rinaldi (1991)

Grotschel and Holland(1991)

Padberg and Sung (1991)

Crowder and Padberg (1980)Padberg and Rinaldi (1987)
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Traveling Salesman Problem
Concorde

Mona Lisa TSP challenge: 100,000 node instance

July 27, 2012: GAP=107. A truncated branch-and-cut search, using an an

artificial upper bound of 5757092 and the LP from April 18, was terminated

after 11.5 CPU years and 20,787 search nodes. The run improved the gap by 4

units.
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Traveling Salesman Problem
Challenge Accepted?

A world tour dataset with 1,904,711 vertices. An optimal solution is yet
to be discovered.
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Traveling Salesman Problem
DFJ Formulation

Consider an undirected graph G = (V ,E ) with vertices V and undirected
edges E . For simplicity, suppose that G is a complete graph. Every pair
of cities connected by an edge e = {u, v} has a distance/cost ce .

min
∑
e∈E

cexe

s.t.
∑
u∈e

xe = 2 ∀ u ∈ V∑
u∈S

∑
v∈S

x{u,v} ≤ |S | − 1 ∀S ⊂ V ,S 6= ∅

xe ∈ {0, 1} ∀ e ∈ E

The first constraint ensures that each city is visited exactly once and the
second constraint prevents sub-tours.
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Traveling Salesman Problem
DFJ Formulation

What if we did not have sub-tour elimination constraints? When is the
constraint strictly < and when is it =?

1

2 5

3 4

6 1

2 5

3 4

6

An alternate way of writing the sub-tour elimination constraints (SEC) is∑
u∈S

∑
v∈Sc

x{u,v} ≥ 2 ∀S ⊂ V ,S 6= ∅

Apply this version to the above examples? Show that the two SEC are
equivalent.
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Traveling Salesman Problem
E -δ Notation

The following short-hand notation is widely used in TSP literature. Let
S ⊆ V .

I E (S) : Edges with both end points in S (also called the edge set).

I δ(S) or δ(S ,Sc): Set of edges with one end in S and another in Sc

(also called the cut set).

I If |S | = 1, we write δ(u) instead of δ({u}) to indicate the set of
edges which have u as one end point.

Additionally, we define x(E (S)) and x(E (S)) as follows

x(E (S)) =
∑
u∈S

∑
v∈S

x{u,v}

x(δ(S)) =
∑
u∈S

∑
v∈Sc

x{u,v}

The xs are also called incidence vectors. The subgraph with edges for
which x values are positive is called the support graph.
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Traveling Salesman Problem
E -δ Notation

The DFJ formulation using E -δ notation can be written as

min
∑
e∈E

cexe

s.t. x(δ(u)) = 2 ∀ u ∈ V

x(E (S)) ≤ |S | − 1 ∀S ⊂ V ,S 6= ∅
xe ∈ {0, 1} ∀ e ∈ E

The formulation with the alternate SEC constraints take the form

min
∑
e∈E

cexe

s.t. x(δ(u)) = 2 ∀ u ∈ V

x(δ(S)) ≥ 2 ∀S ⊂ V ,S 6= ∅
xe ∈ {0, 1} ∀ e ∈ E

We can further restrict 3 ≤ |S | ≤ |V |/2. (Why?)
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Lecture Outline

Variants
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Variants
Asymmetric TSP

In general, the cost of traveling from cities i to j maybe different from j to
i . Consider a directed graph G = (N,A) and suppose that G is complete.
The cost between a pair of cities i and j is cij .

min
∑

(i,j)∈A

cijxij

s.t.
∑
j∈N

xij = 1 ∀ i ∈ N

∑
i∈N

xij = 1 ∀ j ∈ N∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N,S 6= ∅

xij ∈ {0, 1} ∀ (i , j) ∈ A

The first two constraints ensure that each vertex is visited exactly once
and the third constraint prevents sub-tours.
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Variants
Asymmetric TSP

For directed graphs, the shorthand A-δ notation can be extended by addi-
tionally defining the following symbols

I δ+(S): Set of arcs with tail node in S and head node in Sc .

I δ−(S): Set of arcs with tail node in Sc and head node in S .

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 ∀ i ∈ N

x(δ−(i)) = 1 ∀ i ∈ N

x(A(S)) ≤ |S | − 1 ∀ S ⊂ N,S 6= ∅, |S | ≥ 2

xij ∈ {0, 1} ∀ (i , j) ∈ A

The SEC constraint can be replaced with x(δ+(S)) + x(δ−(S)) ≥ 2. How
many variables and constraints are present in this DFW formulation?
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Variants
MTZ Formulation

Alternately, Miller, Tucker, and Zemlin’s model (MTZ) can be used which
keeps track of ui which is the sequence in which city i is visited. Wlog, let
node 1 be the origin of the tour, i.e., u1 = 1.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 ∀ i ∈ N

x(δ−(i)) = 1 ∀ i ∈ N

ui − uj + 1 ≤ (n − 1)(1− xij) ∀ i , j ∈ {2, . . . , n}, i 6= j

2 ≤ ui ≤ n ∀ i ∈ N\{1}
xij ∈ {0, 1} ∀ (i , j) ∈ A

What happens to the SEC when xij equals 1 and 0? Note: The SEC
constraint appears in slightly different formats in different papers.
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Variants
MTZ Formulation

How does the MTZ formulation eliminate sub-tours? Is this a stronger
formulation compared to DFJ? Since the decision variables are in a different
space, we need to compare the projection.

Padberg and Sung show that the MTZ formulation is weaker compared to
the DFJ version. For some intuition, consider a directed cycle C and add
the MTZ SEC inequalities to eliminate the u variables.

∑
(i,j)∈C

xij ≤
(

1− 1

n − 1

)
|C |

Compare this with x(A(C )) ≤ |C | − 1. Which one is tighter? Descrochers
and Laporte proposed a tightened version using the following constraint.

ui − uj + (n − 1)xij + (n − 3)xji ≤ n − 2 ∀i , j ∈ {2, . . . , n}
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Variants
GG Single Commodity Flow Formulation

Gavish and Graves proposed the following single commodity flow formula-
tion for the TSP where the traveler starts from node 1 with n− 1 units of
a commodity and one unit is delivered at each node.

min
∑

(i,j)∈A

cijxij

s.t. y(δ+(1)) = n − 1

y(δ+(i))− y(δ−(i)) = 1 ∀ i ∈ {2, . . . , n}
yij ≤ (n − 1)xij ∀ (i , j) ∈ A

xij ∈ {0, 1} ∀ (i , j) ∈ A

This formulation is again weaker than DFJ’s version.
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Variants
CW Multi-Commodity Flow Formulation

Claus and Wong independently proposed the following multi-commodity
version which has the same LP bounds as that of DFJ. Assume that there
are n commodities that start at node 1 and are delivered to the other cities.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = x(δ−(i)) = 1 ∀ i ∈ N

yk(δ+(1)) = 1 ∀ k ∈ {2, . . . , n}
yk(δ−(1)) = 0 ∀ k ∈ {2, . . . , n}
yk(δ+(k)) = 0 ∀ k ∈ {2, . . . , n}
yk(δ−(k)) = 1 ∀ k ∈ {2, . . . , n}
yk(δ+(i))− yk(δ−(i)) = 0 ∀ i , k ∈ {2, . . . , n}, i 6= k

yk
ij ≤ xij ∀ (i , j) ∈ A, k ∈ {1, . . . , n}
xij ∈ {0, 1} ∀ (i , j) ∈ A

Lecture 5 Traveling Salesman Problem
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Variants
Single vs. Multi Commodity Flow Formulation

Single Commodity Flows Multi Commodity Flows

1

2
5

3 4

6

7

8

9

8
1

1

1

11

11

1

8

7

6

5

4

3

2

1

1

2
5

3 4

6

7

8

9 1

1

1

11

1 1

1

(1,1,1…,1)

(1,1,1…,1)

(0,1,1…,1)

(0,0,1…,1)

(0,0,0…,1)

(0,0,0…,0)
0
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Variants
TSP with Time Windows (TSPTW)

In the TSPTW, each city i in a directed graph G = (N,A) has an asso-
ciated time window [ai , bi ] within which it must be visited. Suppose the
travel time to go from i to j is tij .

The traveler can reach early, in which case they wait till the start of the
time window. Suppose 0 is the starting city and yi is the time at which
customer i is visited, then the TSPTW can be formulated as

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(i)) = 1 ∀ i ∈ N

x(δ−(i)) = 1 ∀ i ∈ N

yj ≥ yi + tij −M(1− xij) ∀ i , j ∈ N, j 6= 0

ai ≤ yi ≤ bi ∀ i ∈ N

xij ∈ {0, 1} ∀ (i , j) ∈ A
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Variants
Prize Collecting TSP (PCTSP)

Let G = (N,A) be a directed network. In this version, the traveler is not
forced to visit all cities. Instead, they get a prize wi for visiting a city i
and pay a penalty pi for not visiting i .

The goal of the traveler is to find a tour that minimizes the cost and
penalty while ensuring that the total prize received is at least U.

As before, traveling between cities i and j has a cost cij . Let xij be 1 if arc
(i , j) is visited, and let yi equal 1 if i is part of the tour and is 0 otherwise.
Suppose G (x , y) indicates the support graph.

Formulate this problem as a MIP.
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Variants
Prize Collecting TSP (PCTSP)

The SEC constraints for this problem imply that G (x , y) has a single cycle.

min
∑

(i,j)∈A

cijxij +
∑
i∈N

pi (1− yi )

s.t.
∑

j∈N\{i}

xij = yi ∀ i ∈ N

∑
i∈N\{j}

xij = yj ∀ j ∈ N

∑
i∈N

wiyi ≥ U

x(A(S)) ≤
∑

i∈S\{k}

yi + (1− yl) ∀k ∈ S , l ∈ Sc ,S ⊂ N, |S | ≥ 2

xij ∈ {0, 1} ∀ (i , j) ∈ A

yi ∈ {0, 1} ∀ i ∈ N

Lecture 5 Traveling Salesman Problem
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Variants
Prize Collecting TSP (PCTSP)

Alternately, one could allow self-loops and set A ← A ∪ {(i , i) : i ∈ N},
xii = 1− yi , and cii = pi .

min
∑

(i,j)∈A

cijxij

s.t.
∑
j∈N

xij = 1 ∀ i ∈ N

∑
i∈N

xij = 1 ∀ j ∈ N∑
i∈N

wixii ≤
∑
i∈N

wi − U

x(δ(S)) + xkk + xll ≥ 1 ∀k ∈ S , l ∈ Sc ,S ⊂ N, |S | ≥ 2

xij ∈ {0, 1} ∀ (i , j) ∈ A
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Variants
Prize Collecting TSP (PCTSP)

The support graph may now contain a single cycle with length ≥ 2 and
self-loops.

1

2 5

3 4

6 1

2 5

3 4

6

Can you verify if the SEC constraints are satisfied for the above examples?
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Variants
Steiner TSP

This version is apt for real-world road networks and not complete graphs
in which it may be necessary to revisit nodes.

Let’s start with an undirected graph G = (V ,E ), and a set of required
nodes VR , the objective is to find a minimum cost tour that visits each of
the required nodes at least once.

1

2
5

3 4

6

7

8

9

1

2 3

4

10 10

10

1

1 1

Note that revisits can also reduce costs in problems where all cities must
be visited as seen in the above example.
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Variants
Steiner TSP

The edges in the graph can be visited more than once as well. Let xe be
the number of times an edge is traversed.

min
∑
e∈E

cexe

s.t. x(δ(u)) is even ∀ u ∈ V

x(δ(S)) ≥ 2 ∀S ⊂ V ,S ∩ VR 6= ∅,VR \ S 6= ∅
xe ∈ Z+ ∀ e ∈ E

How do you enforce the first constraint?
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Variants
Steiner TSP

Flow-based formulations (single or multi-commodity) are commonly used
in practice to avoid dealing with exponential SECs.

min
∑
e∈E

cijxij

s.t. x(δ+(i)) ≥ 1 ∀ i ∈ VR

x(δ+(i)) = x(δ−(i)) ∀ i ∈ N

y(δ+(i))− y(δ−(i)) = 1 ∀ i ∈ VR \ {1}
y(δ+(i))− y(δ−(i)) = 0 ∀ i ∈ V \ VR

0 ≤ yij ≤ (nR − 1)xij ∀(i , j) ∈ A

xij ∈ {0, 1} ∀(i , j) ∈ A

Lecture 5 Traveling Salesman Problem
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Variants
Generalized TSP problem

In the Generalized TSP or Set TSP, we are given a graph G = (N,A) and
a partition of the nodes N = S1 ∪ S2 ∪ . . . ∪ Sm, Sk ∩ Sl = ∅.

The goal is to find a minimum cost cycle of m ≥ 4 cities which includes
exactly one city from each Sk .

1

2 5

3 4

6

7

8

9

10

1

2 5

3 4

6

7

8

9

10

Note that given the city in each Sk to be visited, the problem is a simple
TSP. But we must also determine which city in each set to visit.
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Variants
Generalized TSP problem

Formulate this problem as a MIP using just the xij variables.

min
∑

(i,j)∈A

cijxij

s.t. x(δ+(Sk)) = 1 ∀ k = 1, . . . ,m

x(δ−(Sk)) = 1 ∀ k = 1, . . . ,m

x(δ+(i)) = x(δ−(i)) ∀ i ∈ N∑
Q∈S

∑
R∈Sc

x(δ(Q,R)) ≥ 1 ∀S ⊂ {S1, . . . ,Sm}, 2 ≤ |S | ≤ m − 2

xij ∈ {0, 1} ∀ (i , j) ∈ A

The SEC constraints are similar but are applied to subsets of sets instead
of subsets of cities.
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Variants
Arc Routing Problem

Arc routing requires visiting every arcs in a graph instead of nodes. This has
several applications such as snow plowing, garbage collection, newspaper
distribution, road inventory, surveillance, street views, etc.

The problem was originally proposed by a Chinese mathematician Meigu
Guan in 1960 and is also known as the Chinese Postman Problem (CPP)
or route inspection problem.

The goal in the problem is to find a tour that visits all edges and return
back to the starting point in the shortest time/distance. Nodes may be
revisited.

The ‘Steiner’ version of CPP is called the Rural Postman Problem (RPP)
in which a subset of arcs must be visited.
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Variants
Arc Routing Problem

The CPP problem is polynomially solvable but many of its variants are not.

Given an undirected graph G = (V ,E ), we keep track of xuv which is the
number of times we move from u to v .

In a way, it suffices to visit at least one of the ‘sides’ of the street. Multiple
visits on an edge may be required depending on the costs.

min
∑

(i,j)∈A

c{u,v}(xuv + xvu)

s.t. xuv + xvu ≥ 1 ∀ {u, v} ∈ E

x(δ+(u)) = x(δ−(u)) ∀ u ∈ V

xuv , xvu ∈ Zn
+ ∀ {u, v} ∈ E

There are other VRP like extensions called Capacitated Arc Routing Prob-
lem (CARP) in which vehicles starting at a depot must visit edges and
serve demands.
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Variants
Subway/Tube Challenge

The goal is to find tours in a transit network in the fastest possible time.

Travelers are either required to pass through each station or stop at each
station. Fastest record holders have a place in Guinness records! See the
rules and records for New York City and London.

Lecture 5 Traveling Salesman Problem
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Variants
Related Problems

The icosan game, invented by William Hamilton, is puzzle that involves
visiting the corners of a dodecahedron – polygon with 12 faces.

A Hamiltonian path is one that visits each vertex of a graph exactly once.
If the starting node is included, it forms a Hamiltonian circuit.

Complete graphs always have Hamiltonian paths. Determining if such a
path/circuit exists is non-trivial for general settings.
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Variants
Related Problems

The Knight’s tour involves finding a sequence of moves on the chess board
that traverses every square.

One of the earliest references of this problem can be found in the works of
a 9th century Indian poet Rudrata.
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Variants
Related Problems

The seven bridges of Königsberg problem is to find a tour around the
bridges on river Pregel without passing through a bridge more than once.

Euler in the 1700s showed that it is not possible to find such a path. An
Eulerian path is one which passes through each edge exactly once with
node revisits allowed.

If the path starts and begins at the same node, it is called a Eulerian circuit.
He showed that a connected undirected graph has an Eulerian circuit iff
every vertex is of even degree.
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Variants
Related Problems

TSPs in which the edges satisfy triangle inequality are called metric TSPs.
This property can be exploited in heuristics for finding near optimal tours.

A special case of metric TSP is the Eucledian TSP. Here, the cities are
points in Rn and the edges connecting them are straight lines joining the
end points.
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Your Moment of Zen

Source: xkcd
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