Lecture 5
Traveling Salesman Problem



Previously on Transportation Logistics

Which of these two formulations are better? In such settings we make use
of the idea of projections to compare them on even footing.

Suppose relaxation of formulation P; has decision
variables x € P; C R". Consider a new formulation
whose decision variables are of the type (x,w) €
Q=XxWCR"xR

We then define a projection of @, into the subspace R” as follows
Py = projy(Q:) = {x € R" : (x,w) € @, for some w € W}

The new formulation is better only if P, C P;. Using the point x; = d;
and y; = di/M can you comment on the strength of the two lot sizing
formulations?
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Traveling Salesman Problem
The travelling salesman problem is one of the most celebrated examples of
integer programming.

You have to visit n cities starting from an origin and return to the origin.
Find the cheapest tour.

In addition to logistics, TSPs have been widely used in DNA sequencing
and PCB manufacturing.
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Traveling Salesman Problem

One of the earliest exact solutions for the TSP problem was proposed by Dantzig,
Fulkerson, and Johnson using 49 cities in the US.

Mahalanobis looked at empirical estimates of the objective as a function of
number of vertices in the late 30s in the context of surveying jute crops in
Bengal. He hypothesized that the cost of Euclidean instances is o 4/n.
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Several breakthroughs followed in the next few decades. The pla85900 is a chip
design instance that was solved optimally in 2006.
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Traveling Salesman Problem

Gomory (1958)

Dantzig, Fulkerson, and Johnson (1956)

Little et al. (1963) Bellman, Held, Karp (1962)

Miller, Tucker, and Zemlin (1960)

Lin and Kernighan (1973)
Hong (1972) Grotschel and Padberg | & 11 (1979)

Padberg and Rinaldi (1987) Crowder and Padberg (1980)
Padberg and Rao (1982) Padberg and Hong (1980)

Grotschel and Holland(1991) Hel ( )
elsgaun (2000

Padberg and Rinaldi (1991) Padberg and Sung (1991)
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Concorde

Mona Lisa TSP challenge: 100,000 node instance

July 27, 2012: GAP=107. A truncated branch-and-cut search, using an an
artificial upper bound of 5757092 and the LP from April 18, was terminated
after 11.5 CPU years and 20,787 search nodes. The run improved the gap by 4

units.
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Traveling Salesman Problem

A world tour dataset with 1,904,711 vertices. An optimal solution is yet
to be discovered.
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Traveling Salesman Problem

Consider an undirected graph G = (V/, E) with vertices V and undirected
edges E. For simplicity, suppose that G is a complete graph. Every pair
of cities connected by an edge e = {u, v} has a distance/cost c..

min E CeXe

ecE
s.t. er:2 YueV
uce
3 Xy <181-1 VSCV,5#0
ueS ves
xe € {0,1} Veec E

The first constraint ensures that each city is visited exactly once and the
second constraint prevents sub-tours.
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Traveling Salesman Problem

What if we did not have sub-tour elimination constraints? When is the
constraint strictly < and when is it =7

@ D (/) _»
@ oo!

An alternate way of writing the sub-tour elimination constraints (SEC) is

ZZX{”’V}Zz YSCV,S#£0

ueS vese

Apply this version to the above examples? Show that the two SEC are
equivalent. 12/40



Traveling Salesman Problem

The following short-hand notation is widely used in TSP literature. Let
SCv.
E(S) : Edges with both end points in S (also called the edge set).

5(S) or §(S, S¢): Set of edges with one end in S and another in 5¢
(also called the cut set).

If |S| =1, we write 6(u) instead of §({u}) to indicate the set of
edges which have u as one end point.

Additionally, we define x(E(S)) and x(E(S)) as follows

X(E(S) =" xuwy

ueS ves

x(6(5) =D Xuw

ueS vese
The xs are also called incidence vectors. The subgraph with edges for
which x values are positive is called the support graph.
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Traveling Salesman Problem

The DFJ formulation using E-§ notation can be written as

min E CeXe

ecE

sit. x(d(u)) =2 YueV
x(E(S))<|S|—-1 VSCV,S#£0
xe € {0,1} Vee E

The formulation with the alternate SEC constraints take the form

min E CeXe

ecE

sit. x(6(w)) = YueV
x(6(5)) = 2 VSCV,S#0
x. €{0,1} Vee E
We can further restrict 3 < |S| < |V|/2. (Why?) 14/40
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Variants

In general, the cost of traveling from cities i to j maybe different from j to
i. Consider a directed graph G = (N, A) and suppose that G is complete.
The cost between a pair of cities i and j is cj;.

min E CijXij

(ij)eA
st Y xp=1 VieN
JEN
D x=1 VjeN
ieN
YD xSt VSCN,S#0D
i€eS jes
xj € {0,1} V(i,j)eA

The first two constraints ensure that each vertex is visited exactly once
and the third constraint prevents sub-tours.
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Variants

For directed graphs, the shorthand A-§ notation can be extended by addi-
tionally defining the following symbols

5% (S): Set of arcs with tail node in S and head node in S¢.
d7(S): Set of arcs with tail node in 5¢ and head node in S.

E CijXij

(ij)eA
st. x(6T(i) =1 vieN
x(07(1) =1 VieN
x(A(S)) < [S]-1 VSCN,S#0,[S|>2
xj € {0,1} V(i,j)eA

The SEC constraint can be replaced with x(67(S)) 4+ x(67(S)) > 2. How
many variables and constraints are present in this DFW formulation?
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Variants

Alternately, Miller, Tucker, and Zemlin's model (MTZ) can be used which
keeps track of u; which is the sequence in which city i is visited. Wlog, let
node 1 be the origin of the tour, i.e., u; = 1.

E , CijXij

(iJ)eA

st. x(6T(i) =1 vieN
x(67 () =1 VieN
ui—ui+1<(n—-1)(1-x;) Vi, je{2,...,n}i#]
2<u;<n Vie N\{1}
x;j € {0,1} V(i,j)eA

What happens to the SEC when Xx; equals 1 and 07 Note: The SEC
constraint appears in slightly different formats in different papers.
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Variants

How does the MTZ formulation eliminate sub-tours? Is this a stronger
formulation compared to DFJ? Since the decision variables are in a different
space, we need to compare the projection.

Padberg and Sung show that the MTZ formulation is weaker compared to
the DFJ version. For some intuition, consider a directed cycle C and add
the MTZ SEC inequalities to eliminate the u variables.

Compare this with x(A(C)) < |C| — 1. Which one is tighter? Descrochers
and Laporte proposed a tightened version using the following constraint.

ui—uj+(n—1)x; +(n—3)x; <n-2 Vi, je{2,...,n}
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Variants

Gavish and Graves proposed the following single commodity flow formula-
tion for the TSP where the traveler starts from node 1 with n — 1 units of
a commodity and one unit is delivered at each node.

E CijXij

(ij)eA
st. y(0T(1)=n-1
y(6* (1) = y(6 (1) =1 Vie{2,... n}
yi < (n—1)x; V(i,j)eA
x;j € {0,1} V(i,j)eA

This formulation is again weaker than DFJ's version.
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Variants

Claus and Wong independently proposed the following multi-commodity
version which has the same LP bounds as that of DFJ. Assume that there
are n commodities that start at node 1 and are delivered to the other cities.

(iJ)eA

st. x(6(0) =x(67 () =1 VieN
yiet@a) =1 Vke{2...  n}
y (6= (1)) =0 Vke{2,.. ., n}
y (6T (k) =0 Vke{2... n}
v (k) =1 Vke{2,... n}
yE(T(i)) = y* (5~ (i) =0 Vike{2,...,n},i#k
v < x; V(i,j) € Ake{l,...,n}
xj € {0,1} V(i,j)eA
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Variants

Single Commodity Flows Multi Commodity Flows
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Variants

In the TSPTW, each city 7 in a directed graph G = (N, A) has an asso-
ciated time window [a;, b;] within which it must be visited. Suppose the
travel time to go from i to j is tj.

The traveler can reach early, in which case they wait till the start of the
time window. Suppose 0 is the starting city and y; is the time at which
customer |/ is visited, then the TSPTW can be formulated as

min E CijXjj

(i.j)EA
st x(57(i) =1 VienN
x(67 () = 1 VieN
i 2 yi+ ti — M(1 = x;) Vi, j€eN,j#0
a <y <b VieN
xj € {0,1} vV (i,j) €A
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Variants

Let G = (N, A) be a directed network. In this version, the traveler is not
forced to visit all cities. Instead, they get a prize w; for visiting a city /
and pay a penalty p; for not visiting /.

The goal of the traveler is to find a tour that minimizes the cost and
penalty while ensuring that the total prize received is at least U.

As before, traveling between cities i and j has a cost ¢;;. Let x;; be 1 if arc
(7,/) is visited, and let y; equal 1 if i is part of the tour and is O otherwise.
Suppose G(x, y) indicates the support graph.

Formulate this problem as a MIP.
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Variants

The SEC constraints for this problem imply that G(x, y) has a single cycle.

> cixg+ > pi(l—yi)

(ij)EA ieN

Z Xjj = Yi vieN
JEN\{i}

Y oxj=y vVjeN
iEN\{j}

Z wiy; > U

ieN

< D) yit(1-y) VkeS,1eS°,SCN,|S|>2
:eS\{k}
x; € {0,1} V(i,j)eA
yi €{0,1} VieN
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Variants

Alternately, one could allow self-loops and set A <— AU {(i,i) : i € N},

xi=1—y; and ¢; = p;.

min E Cij Xij

(ij)EA
s.t. ZX,'J' =1
JEN
D %=1
ieN
ZWiXii SZW,'— U
ieN ieN
x(6(S)) + xux +xy > 1
Xij S {0, 1}

vieN

vjeN

Vke S, 1S, SCN,|S|>2
V(i,j) €A
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Variants

The support graph may now contain a single cycle with length > 2 and
self-loops.

oY /(63
+ 5
f\

Can you verify if the SEC constraints are satisfied for the above examples?

&
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Variants

This version is apt for real-world road networks and not complete graphs
in which it may be necessary to revisit nodes.

Let's start with an undirected graph G = (V, E), and a set of required
nodes Vg, the objective is to find a minimum cost tour that visits each of
the required nodes at least once.

Note that revisits can also reduce costs in problems where all cities must
be visited as seen in the above example.
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Variants

The edges in the graph can be visited more than once as well. Let x. be
the number of times an edge is traversed.

min E CeXe

ecE

s.t. x(6(v)) is even YueV
x(6(5)) > 2 VSCV,SNVr#0,VR\S #0
xe € L* Veec E

How do you enforce the first constraint?

20/40



Variants

Flow-based formulations (single or multi-commodity) are commonly used
in practice to avoid dealing with exponential SECs.

ecE

st x(67(i)) > 1 Vie Vg
x(67 (7)) = x(67 (1)) VieN
y(6* (1) —y(6~ (i) =1 Vie Ve\ {1}
y(65(1)) —y(6~ (7)) =0 Vie V\ Vg
0 <y < (ng —1)x; v(i,j) €A
xj € {0,1} V(i,j) e A
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Variants

In the Generalized TSP or Set TSP, we are given a graph G = (N, A) and
a partition of the nodes N =S5, US U...US,, SxNS = 0.

The goal is to find a minimum cost cycle of m > 4 cities which includes
exactly one city from each Sj.

Note that given the city in each Sy to be visited, the problem is a simple
TSP. But we must also determine which city in each set to visit.
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Variants

Formulate this problem as a MIP using just the x;; variables.

E Cij Xij

(ij)eA
st. x(07(Sk)) =1 Vk=1,...,m
x(67(S)) =1 Vk=1,...,m
(5+()):X(5 (f)) VieN
>N x( y>1 VSC{S,....,5:},2< /S| <m—2
QeS Rese
xj € {0,1} V(i,j)eA

The SEC constraints are similar but are applied to subsets of sets instead
of subsets of cities.
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Variants

Arc routing requires visiting every arcs in a graph instead of nodes. This has
several applications such as snow plowing, garbage collection, newspaper
distribution, road inventory, surveillance, street views, etc.

The problem was originally proposed by a Chinese mathematician Meigu
Guan in 1960 and is also known as the Chinese Postman Problem (CPP)
or route inspection problem.

The goal in the problem is to find a tour that visits all edges and return
back to the starting point in the shortest time/distance. Nodes may be
revisited.

The ‘Steiner’ version of CPP is called the Rural Postman Problem (RPP)
in which a subset of arcs must be visited.
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Variants

The CPP problem is polynomially solvable but many of its variants are not.

Given an undirected graph G = (V/, E), we keep track of x,, which is the
number of times we move from u to v.

In a way, it suffices to visit at least one of the ‘sides’ of the street. Multiple
visits on an edge may be required depending on the costs.

min Z Cuwy (Xuv + Xvu)

(ij)eA

st Xpy + x> 1 V{u,v} € E
x(07(u)) = x(67 (uv)) YueV
Xuv, Xvu € 21, V{u,v} € E

There are other VRP like extensions called Capacitated Arc Routing Prob-
lem (CARP) in which vehicles starting at a depot must visit edges and
serve demands.
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Variants

The goal is to find tours in a transit network in the fastest possible time.

Travelers are either required to pass through each station or stop at each
station. Fastest record holders have a place in Guinness records! See the
rules and records for New York City and London.
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https://en.wikipedia.org/wiki/Subway_Challenge
https://en.wikipedia.org/wiki/Tube_Challenge

Variants

The icosan game, invented by William Hamilton, is puzzle that involves
visiting the corners of a dodecahedron — polygon with 12 faces.

A Hamiltonian path is one that visits each vertex of a graph exactly once.
If the starting node is included, it forms a Hamiltonian circuit.

Complete graphs always have Hamiltonian paths. Determining if such a
path/circuit exists is non-trivial for general settings.
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Variants

The Knight's tour involves finding a sequence of moves on the chess board
that traverses every square.

One of the earliest references of this problem can be found in the works of
a 9th century Indian poet Rudrata.
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Variants

The seven bridges of Konigsberg problem is to find a tour around the
bridges on river Pregel without passing through a bridge more than once.

Euler in the 1700s showed that it is not possible to find such a path. An
Eulerian path is one which passes through each edge exactly once with
node revisits allowed.

If the path starts and begins at the same node, it is called a Eulerian circuit.
He showed that a connected undirected graph has an Eulerian circuit iff
every vertex is of even degree.
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Variants

TSPs in which the edges satisfy triangle inequality are called metric TSPs.
This property can be exploited in heuristics for finding near optimal tours.

A special case of metric TSP is the Eucledian TSP. Here, the cities are
points in R” and the edges connecting them are straight lines joining the
end points.
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Your Moment of Zen

MY HoBpY:
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