
CE 205A
Transportation Logistics

Lecture 4

Branch and Bound

Lecture 4 Branch and Bound



2/41

Previously on Transportation Logistics

Most methods for solving integer programs rely on relaxations and LP
solutions.

An ideal LP relaxation coincides with the convex hull of feasible points.
(Why?)

Lecture 4 Branch and Bound



3/41

Previously on Transportation Logistics

Consider the following feasible set of points

X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}

There are infinitely many relaxation
formulations that can lead to this fea-
sible region.

Can you tell which of the three for-
mulations P1, P2, and P3 are strong?
What about their LP relaxations?

In general, if P1 and P2 are two formulations of an IP, P1 is a stronger
formulation than P2 if P1 ⊂ P2.

Lecture 4 Branch and Bound



4/41

Previously on Transportation Logistics

Given xB = B−1b−B−1NlxNl
−B−1NuxNu , the objective can be written

as

z = cT
B(B−1b− B−1NlxNl

− B−1NuxNu ) + cT
Nl
xNl

+ cT
Nu
xNu

= cT
BB
−1b + (cT

Nl
− cT

BB
−1Nl)xNl

+ (cT
Nu
− cT

BB
−1Nu)xNu

If cT
Nl
− cBB

−1Nl ≥ 0T, increasing the xNl
values which are at their lower

bounds will only increase the objective.

If cT
Nu
− cBB

−1Nu ≤ 0, decreasing xNu will again increase the objective.

Theorem

Suppose x∗ is a basic feasible solution and cT
Nl
− cBB

−1Nl ≥ 0T and

cT
Nu
− cBB

−1Nu ≤ 0T, then x∗ is optimal

What if the optimality conditions are violated for multiple non-basic vari-
ables? Which variable do you choose?

Lecture 4 Branch and Bound



5/41

Lecture Outline

1 IP Solution Methods

2 Branch and Bound

3 Preprocessing

Lecture 4 Branch and Bound



6/41

Lecture Outline

IP Solution Methods

Lecture 4 Branch and Bound



7/41

IP Solution Methods
Rounding

We can always solve linear programming relaxations and round off the
values. But this can cause two issues:

Infeasibility Far from Optimality

Lecture 4 Branch and Bound



8/41

IP Solution Methods
Bounds

Most methods for solving IPs rely on calculating bounds. These bounds
can often be found quickly and improved with additional effort.

For a minimization problem, primal bounds or upper bounds are derived
from feasible solutions. They range from being simple in some cases (such
as the TSP), to being NP-complete or NP-hard for other kinds of problems
such as routing problems with time windows.

Greedy and local-search based heuristics are standard ways to arrive at
good upper bounds.

Lecture 4 Branch and Bound



9/41

IP Solution Methods
Bounds

The lower bounds or dual bounds can be found from relaxations. These
can be of two types

I The feasible region is expanded so that it becomes easier to solve
the new problem. E.g., LP relaxations.

I The objective function is replaced by another function which is a
lower bound estimate for all feasible solutions.

Other options include Lagrangian relaxation which will be discussed in
detail later.

Lecture 4 Branch and Bound



10/41

IP Solution Methods
Cutting Planes

The idea behind cutting plane algorithms is to solve the LP relaxations and
identify a hyperplane that separates the LP relaxation and integer feasible
solutions of the problem.

This is done iteratively by solving a separation problem which determines

new cuts to be added to the problem.

Lecture 4 Branch and Bound



11/41

IP Solution Methods
Branch and Bound

The branch and bound method is a divide-and-conquer method in which
the feasible region is iteratively decomposed into smaller regions.

The method determines if a region of the feasible region should be further
broken down using the upper and lower bounds of the problem.

Lecture 4 Branch and Bound



12/41

IP Solution Methods
Branch and Cut

Cutting plane algorithms sometimes do not improve the LP relaxations by
a significant margin. In such cases, they are combined with the branch
and bound methods.

In this hybrid approach, one would iteratively decompose the feasible region
and add cuts to the sub-regions.

Lecture 4 Branch and Bound



13/41

IP Solution Methods
Branch and Price

Consider solving the LP relaxations of problems with a large number of vari-
ables (sometimes they may be exponential and prohibitive to specify/store)
but fewer constraints.



A·1 A·2 A·3 . . . A·n−1 A·n







x1

x2

x3

...
xn−1

xn




=




b1

b2

...
bm




Only a few variables are part of the optimal basis and the rest are zeros.
Using column generation, we iteratively pick variables that can enter the
basis. This is achieved by solving a pricing problem using the dual variables.

Lecture 4 Branch and Bound



14/41

IP Solution Methods
Heuristics

Heuristics are a good way to find approximate solutions, especially when
there are time constraints. These could be problem/model-based or generic
in nature.

I Adaptive/Large/Variable Neighborhood Search (LNS, VLNS, ALNS)

I Genetic Algorithms

I Simulated Annealing

I Tabu Search

These methods typically start with a single or a pool of feasible solutions
and try to find new feasible solutions and evaluate their objective value to
see if they can be included or discarded.

Lecture 4 Branch and Bound



15/41

Lecture Outline

Branch and Bound

Lecture 4 Branch and Bound



16/41

Branch and Bound
History

See link for some historical notes on the 1963 paper.

Lecture 4 Branch and Bound

http://www-personal.umich.edu/~murty/B&BHistory.pdf


17/41

Branch and Bound
History

Land and Doig’s Branch and Bound Tree

Interviews by Land and Doig

Lecture 4 Branch and Bound

https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Land-Ailsa-H
https://www.youtube.com/watch?v=jdcCtOp80jY


18/41

Branch and Bound
Introduction

Branch and bound is a enumeration method that tries to split the feasible
regions into sub-regions and solve the LP with extra constraints.

Consider an optimization problem z = min cTx such that x ∈ X . Suppose
X is broken down into smaller sets X1, . . . ,Xk such that X = X1∪ . . .∪Xk .

Let zk = min cTx such that x ∈ Xk . Then,

z = min
k

zk

The immediate question is how do we create subsets of the feasible region.

Lecture 4 Branch and Bound



19/41

Branch and Bound
Geometry

Suppose the blue line represent a level curve of the objective.

A

B

C

D

Infeasible

Lecture 4 Branch and Bound



20/41

Branch and Bound
Geometry

It is not necessary to split the problem into two branches at each node.
One can perform multi-way branching as well.

A

Lecture 4 Branch and Bound



21/41

Branch and Bound
Geometry

Decomposition strategies can be problem specific. Consider the TSP prob-
lem for instance.

1

2

3

4
5

Level 1: 4 Problems

Level 2: 3 Problems Level 2: 3 Problems Level 2: 3 Problems Level 2: 3 Problems

1

2

3

4
5

1

2

3

4
5

1

2

3

4
5

1

2

3

4
5

Lecture 4 Branch and Bound



22/41

Branch and Bound
Relaxations

To understand the branch and bound method for a minimization problem,
it is important to remember the following facts:

I The LP relaxation is a lower
bound.

I Any IP solution is feasible and
hence an upper bound.

I As we add more constraints to
the original LP relaxation, the
new LP does strictly worse
(Why?).

Assume that an arc from one prob-
lem to the other indicates an extra
constraint. Can you write mark the
LP solutions at each node on the real
line?

1

2

54

3

76

98

xj ≤ d xj ≥ d

Lecture 4 Branch and Bound



23/41

Branch and Bound
Pruning

However, in practice we do not know where z∗ is located. Hence, we start
with the LP relaxation lower bound and search for an IP upper bound. The
difference between them is called the optimality gap.

The IP upper bound is also called the incumbent. Based on the earlier
discussion, we can prune a B&B tree using the following three rules:

I Integrality

I Infeasibility

I Incumbent

Lecture 4 Branch and Bound



24/41

Branch and Bound
Example

Solve the following optimization problem using branch and bound:

min − 8x1 − 22x2 − 10x3 − 15x4

s.t. x1 + 4x2 + 7x3 + 5x4 ≤ 11

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

0 ≤ x4 ≤ 1

Lecture 4 Branch and Bound



25/41

Branch and Bound
Example

The gap is measured based on (zUB −minactive nodes zLB)/zUB ∗ 100, where

1

2

54

3

76

98

𝑥4 ≤ 0 𝑥4 ≥ 1

𝑥3 ≤ 0 𝑥3 ≥ 1

𝑥2 ≤ 0 𝑥2 ≥ 1

𝑥2 ≤ 0 𝑥2 ≥ 1

𝑧𝐿𝑃 = −58

𝑧𝐿𝑃 = −51.71

𝑧𝐿𝑃 = −46

𝑧𝐿𝑃 = −39.5

𝑧𝐿𝑃 = −34 𝑧𝐿𝑃 = −32

𝑧𝐿𝑃 = −43.2 𝑧𝐿𝑃 = −53

𝑧𝐿𝑃 = −55.5

Lecture 4 Branch and Bound



26/41

Branch and Bound
Pseudocode

The following pseudocode summarizes the main steps involved in Branch
and Bound. Several modifications are possible to speed-up the algorithm.

1 Set zUB =∞ and add the root to a list of active nodes.

2 Pick an element from the list of active nodes, solve its LP
relaxation, and delete it. Terminate if the list is empty.

3 If the problem is infeasible or if zLP > zUB , go to Step 2. Else, two
cases are possible.

I If the solution is integral, update zUB = zLP and go to Step 2.

I If the solution is fractional, create two child nodes with
xj ≤ bxLPj c and xj ≥ dxLPj e, respectively and add them to the
list of active nodes and go to Step 2.

Lecture 4 Branch and Bound



27/41

Branch and Bound
Implementation Choices

Minor implementation choices can have a significant impact on the run
time of a Branch and Bound algorithm.

I Can we prioritize variable selection from the list of active
nodes? Typically, we pick the node whose parent LP solution is the
smallest. This is the most ‘promising’ child node. Such a strategy is
called the best node first approach.

However, in the early stages, we do not have an upper bound
(unless it is supplied from another heuristic). Hence, we first prefer
to go down the tree to get an integer feasible solution. This is
called the depth first search strategy. Once, an integer solution is
found, one can switch to the best node first strategy.

Lecture 4 Branch and Bound



28/41

Branch and Bound
Implementation Choices

I How to choose a variable to branch on when multiple
variables are fractional? A popular option is to choose the most
fractional variable, i.e., the variable closest to 0.5. Suppose F is the
set of fractional variables, then choose

j ∈ arg max
F

min
{
xLPj − bxLPj c, 1− xLPj + bxLPj c

}

I Is there a way to solve the LPs faster? Use Dual Simplex when
descending from a parent to a child since the new constraint will
not violate reduced cost optimality conditions. Otherwise, store the
basis of the parent and use it as a starting point. Exploit simplex
with bounds instead of adding the variables as constraints.

Lecture 4 Branch and Bound



29/41

Branch and Bound
Implementation Choices

I How can we reduced the number of nodes explored?The
number of nodes explored can grow very quickly and increase
memory usage. Hence, one can delete all active nodes that are not
promising as soon as the upper bounds change using the LP
relaxation solution of their parent. (How?)

Other options include:

1 Generalized upper bound (GUB) or special order sets (SOS)
2 Strong branching
3 Adding cuts
4 Branching strategies that make the tree balanced (e.g.,

imagine two-way and multi-way branching of TSP)

Lecture 4 Branch and Bound



30/41

Branch and Bound
GUB or SOS Branching

Consider the constraints of the following form which we saw in the last
lecture

∑k
j=1 xj = 1.

When we branch on a single fractional variable, one side of the tree where
xj = 1 has only one node, but the other child has k − 1 nodes and hence
the tree becomes unbalanced.

1

2 3

∑

j∈Q
xj = 0

j∈Qc

xj = 0
∑

To avoid this issue, we split the feasible re-
gion using constraints of the form

∑
j∈Q xj =

0 as shown in the figure.

We find an index r such that r = min
{
t :
∑t

i=1 x
LP
i ≥ 1/2

}
. The two

child nodes are created by setting Q = {1, . . . , r}.

Lecture 4 Branch and Bound



31/41

Branch and Bound
GUB or SOS Branching

Apply GUB branching on the following problem after branching on x13 at
the root.

max 50x1 + 47x2 + 44x3 + 41x4 + 38x5 + 36x6 + 31x7 + 29x8

+ 27x9 + 25x10 + 23x11 + 21x12 + 20x13

s.t.
13∑

j=1

(21− j)xj ≤ 22

12∑

j=1

xj = 1

xj ∈ {0, 1} ∀ j = 1, . . . , 13

Can you visualize how the feasible region is being split to generate the

child nodes?

Lecture 4 Branch and Bound



32/41

Branch and Bound
Strong Branching

In the strong branching strategy, CPLEX explores the up and down branches
to either optimality or for a certain number of levels and updates the
bounds.

Restricting the variables to a lower and higher values are also called down
and up branches, respectively.

The direction which is most promising is chosen as the branching variable
at the parent node.

Lecture 4 Branch and Bound



33/41

Branch and Bound
CPLEX Output and Settings

Check out the details that CPLEX prints for different nodes of the branch
and bound tree. Note that integer solution is labeled ‘cutoff’ in CPLEX
node log.

I Presolve

I Branching directions

I Multiple solutions

I Number of nodes explored

I Node selection

I Variable selection

Lecture 4 Branch and Bound

https://www.ibm.com/docs/en/icos/20.1.0?topic=mip-progress-reports-interpreting-node-log
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-node-presolve-switch
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-branching-direction
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-integer-solution-limit
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-node-limit
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-node-selection-strategy
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-variable-selection-strategy


34/41

Lecture Outline

Preprocessing

Lecture 4 Branch and Bound



35/41

Preprocessing
Introduction

Before running a branch and bound algorithm, most solvers have a prepro-
cessing stage that may perform one or more of the following operations:

I Tighten bounds

I Remove redundant constraints

I Fix variables

These steps can reduce the number of variables and constraints as well as

help solve the LP relaxations faster.

Lecture 4 Branch and Bound



36/41

Preprocessing
Tighten Bounds

Consider the inequality
∑n

j=1 ajxj ≤ b, where lj ≤ xj ≤ uj for all j =
1, . . . , n.

Can you improve the upper bound on x1 if a1 > 0?

x1 ≤ min



u1,

1

a1

(
b −

∑

j :aj>0

aj lj −
∑

j :aj<0

ajuj

)


Can you improve the lower bound on x1 if a1 < 0?

x1 ≥ max



l1,

1

a1

(
b −

∑

j :aj>0

aj lj −
∑

j :aj<0

ajuj

)


Can you do better? You can update them using the new bounds and round
up the new lower bounds and round down the upper bounds if they are
fractional, i.e., dlie ≤ xi ≤ buic

Lecture 4 Branch and Bound



37/41

Preprocessing
Remove Redundant Constraints

When is a constraint
∑n

j=1 ajxj ≤ b, where lj ≤ xj ≤ uj for all j = 1, . . . , n
redundant? Check if

∑

j :aj>0

ajuj +
∑

j :aj<0

aj lj ≤ b

Likewise the problem is infeasible if

∑

j :aj>0

aj lj +
∑

j :aj<0

ajuj > b

Lecture 4 Branch and Bound



38/41

Preprocessing
Fix Variables

Consider an optimization problem of the form min cTx, s.t., Ax ≥ b and
let xj ∈ [lj , uj ]∀ j = 1, . . . , n.

I Can you fix the value of a variable xj if aij ≥ 0 ∀ i = 1, . . . ,m and
cj < 0? Set xj = uj .

I Can you fix the value of a variable xj if aij ≤ 0 ∀ i = 1, . . . ,m and
cj > 0? Set xj = lj .

Prove the above results using a duality argument.

Lecture 4 Branch and Bound



39/41

Preprocessing
Fix Variables

Recall that the LP relaxation after simplex terminates can be written as

zLP = cT
BB
−1b + c̄T

Nl
xNl

+ c̄T
Nu
xNu

Suppose zUB is an primal/upper bound of the integer program. We can
update the upper bound of a non-basic variable j that is currently at its
lower bound (if c̄j 6= 0) as follows

xj ≤ min

{
uj ,

⌊
zUB − zLP

c̄j

⌋}

𝑧𝐿𝑃 𝑧𝑈𝐵

𝑧∗

Increasing xj will increase the objective

Likewise, for a non-basic variable at its upper bound, the lower bound can

be adjusted to max{lj , d z
LP−zUB

c̄j
e}.

Lecture 4 Branch and Bound



40/41

Preprocessing
Example

Apply the above preprocessing rules on the following LP.

min − 2x1 − x2 + x3

s.t. 5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3

Lecture 4 Branch and Bound



41/41

Your Moment of Zen

Source: xkcd

Lecture 4 Branch and Bound


