Lecture 4
Branch and Bound

Previously on Transportation Logistics

Most methods for solving integer programs rely on relaxations and LP
solutions.

An ideal LP relaxation coincides with the convex hull of feasible points.
(Why?)

2/41

Previously on Transportation Logistics

Consider the following feasible set of points

X ={(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(2,3)}

There are infinitely many relaxation
formulations that can lead to this fea-
sible region.

Can you tell which of the three for-
mulations P;, P>, and are strong?
. . What about their LP relaxations?

In general, if P; and P, are two formulations of an IP, P; is a stronger
formulation than P, if P; C P».

3/41

Previously on Transportation Logistics

Given xg = B~lb-— B_lN/xN, — B_lNuxNu, the objective can be written
as
z = cE(B‘lb - B_lN/xN, — B_lNuxNu) + C-l,\—/IXN/ + C-,(,UXNU
=ctB b+ (cI,, — cEB7IN))xp, + (CLu —cEB7IN,)xy,

If CL/ —cgB7IN, >0, increasing the xp, values which are at their lower
bounds will only increase the objective.

If C—,T\-,u —¢cgB7IN, <0, decreasing xy, will again increase the objective.

Suppose x* is a basic feasible solution and cI,/ —cgB7IN; > 0" and
C1/\—/u — cBB_lNu < OT, then x* is optimal

What if the optimality conditions are violated for multiple non-basic vari-
ables? Which variable do you choose?

4/41

Lecture Qutline

IP Solution Methods
Branch and Bound

Preprocessing

5/41

Lecture Qutline

IP Solution Methods

6/41

IP Solution Methods

We can always solve linear programming relaxations and round off the
values. But this can cause two issues:

Infeasibility Far from Optimality

7/41

IP Solution Methods

Most methods for solving IPs rely on calculating bounds. These bounds
can often be found quickly and improved with additional effort.

For a minimization problem, primal bounds or upper bounds are derived
from feasible solutions. They range from being simple in some cases (such
as the TSP), to being NP-complete or NP-hard for other kinds of problems
such as routing problems with time windows.

Greedy and local-search based heuristics are standard ways to arrive at
good upper bounds.

8/41

IP Solution Methods

The lower bounds or dual bounds can be found from relaxations. These
can be of two types

The feasible region is expanded so that it becomes easier to solve
the new problem. E.g., LP relaxations.

The objective function is replaced by another function which is a
lower bound estimate for all feasible solutions.

Other options include Lagrangian relaxation which will be discussed in
detail later.

9/41

IP Solution Methods

The idea behind cutting plane algorithms is to solve the LP relaxations and
identify a hyperplane that separates the LP relaxation and integer feasible
solutions of the problem.

i

This is done iteratively by solving a separation problem which determines
new cuts to be added to the problem.

10/41

IP Solution Methods

The branch and bound method is a divide-and-conquer method in which
the feasible region is iteratively decomposed into smaller regions.

>

>
>

The method determines if a region of the feasible region should be further
broken down using the upper and lower bounds of the problem.

11/41

IP Solution Methods

Cutting plane algorithms sometimes do not improve the LP relaxations by
a significant margin. In such cases, they are combined with the branch
and bound methods.

1

,//

In this hybrid approach, one would iteratively decompose the feasible region
and add cuts to the sub-regions.

12/41

IP Solution Methods

Consider solving the LP relaxations of problems with a large number of vari-
ables (sometimes they may be exponential and prohibitive to specify/store)
but fewer constraints.

X1

X2 b1

X3 b,
A, A, A3 ... A, 1 A,) =

Xn—1 bm

Xn

Only a few variables are part of the optimal basis and the rest are zeros.
Using column generation, we iteratively pick variables that can enter the
basis. This is achieved by solving a pricing problem using the dual variables.

13/41

IP Solution Methods

Heuristics are a good way to find approximate solutions, especially when
there are time constraints. These could be problem/model-based or generic
in nature.

Adaptive/Large/Variable Neighborhood Search (LNS, VLNS, ALNS)
Genetic Algorithms

Simulated Annealing

Tabu Search

These methods typically start with a single or a pool of feasible solutions
and try to find new feasible solutions and evaluate their objective value to
see if they can be included or discarded.

14/41

Lecture Qutline

Branch and Bound

15/41

Branch and Bound

VoLuME 28

ECONOMETRICA

July, 1960

NuMBER 3

w1l

AN AUTOMATIC METHOD OF SOLVING DISCRETE
PROGRAMMING PROBLEMS

By A. H. Laxp anp A. G. Do

In the classical linear programming problem the behaviour of continuous,
nonnegative variables subject to a system of linear inequalities is investigated.
One possible generalization of this problem is to relax the continuity condi-
tion on the variables. This paper presents a simple numerical algorithm for
the solution of programming problems in which some or all of the variables
can take only discrete values. The algorithm requires no special techniques
beyond those used in ordinary linear programming, and lends itself to
automatic computing. Its use is illustrated on two numerical examples.

AN ALGORITHM FOR THE TRAVELING SALESMAN

PROBLEM

John D. C. Little
Massachusetts Tnstitute of Technology
Katta G. Murty*

Indian Statistical Institute

Dura W. S

International Business Machines Corporation

Caroline Karel

Case Institute of Technology
(Received Mareh 6, 1063)
A ‘branch and bound" sgorithm s pressnted for sotving the traveling

fulsunan problem, tof il ours (enaible solutions) e bro
into

procedure called b

ngly ing.
uul;wt ot bound o e I:-muh of the tours therein 1 caleuls

algorithm
without using methods special t

particular proble

See link for some historical notes on the 1963 paper.

16/41

http://www-personal.umich.edu/~murty/B&BHistory.pdf

Branch and Bound

Land and Doig's Branch and Bound Tree

Interviews by Land and Doig

17/41

https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Land-Ailsa-H
https://www.youtube.com/watch?v=jdcCtOp80jY

Branch and Bound

Branch and bound is a enumeration method that tries to split the feasible
regions into sub-regions and solve the LP with extra constraints.

Consider an optimization problem z = minc'x such that x € X. Suppose

X is broken down into smaller sets Xi,..., Xk such that X = XjU...UXx.

Let z¥ = minc"x such that x € X,. Then,

Z = min zx
k

The immediate question is how do we create subsets of the feasible region.

18/41

Branch and Bound

Suppose the blue line represent a level curve of the objective.

Infeasible

19/41

Lecture 4

Branch and Bound

It is not necessary to split the problem into two branches at each node.
One can perform multi-way branching as well.

v

20/41

Branch and Bound

Decomposition strategies can be problem specific. Consider the TSP prob-
lem for instance.

Level 1: 4 Problems

@ @
® i ® ©)
©) ©) ®
® ®
© @ @ @

Level 2: 3 Problems Level 2: 3 Problems Level 2: 3 Problems Level 2: 3 Problems

21/41

Branch and Bound

To understand the branch and bound method for a minimization problem,
it is important to remember the following facts:

The LP relaxation is a lower
bound.

Any IP solution is feasible and
hence an upper bound.

As we add more constraints to
the original LP relaxation, the
new LP does strictly worse
(Why?).

Assume that an arc from one prob-
lem to the other indicates an extra
constraint. Can you write mark the
LP solutions at each node on the real
line?

22/41

Branch and Bound

However, in practice we do not know where z* is located. Hence, we start
with the LP relaxation lower bound and search for an IP upper bound. The
difference between them is called the optimality gap.

The IP upper bound is also called the incumbent. Based on the earlier
discussion, we can prune a B&B tree using the following three rules:
Integrality
Infeasibility

Incumbent

23/41

Branch and Bound

Solve the following optimization problem using branch and bound:

min — 8x; — 22x, — 10x3 — 15x4
s.it. x3+4x 4+ 7x3+5x <11
0<x <3
0<x <1
0<x3<1
0<x<1

24/41

Branch and Bound

The gap is measured based on (zyg — MiNactive nodes ZL5)/Zus * 100, where

zp = —58

Zip = —51.71

Zip = —46 Zp = —43.2 Zp = =53

25/41

Lecture 4

Branch and Bound

The following pseudocode summarizes the main steps involved in Branch
and Bound. Several modifications are possible to speed-up the algorithm.
Set zyg = oo and add the root to a list of active nodes.

Pick an element from the list of active nodes, solve its LP
relaxation, and delete it. Terminate if the list is empty.

If the problem is infeasible or if z:¥ > z,g, go to Step 2. Else, two
cases are possible.

If the solution is integral, update zyg = z-” and go to Step 2.

If the solution is fractional, create two child nodes with
x; < _XJ-LPJ and x; > [XJ-LP], respectively and add them to the
list of active nodes and go to Step 2.

26/41

Branch and Bound

Minor implementation choices can have a significant impact on the run
time of a Branch and Bound algorithm.

Can we prioritize variable selection from the list of active
nodes? Typically, we pick the node whose parent LP solution is the
smallest. This is the most ‘promising’ child node. Such a strategy is
called the best node first approach.

However, in the early stages, we do not have an upper bound
(unless it is supplied from another heuristic). Hence, we first prefer
to go down the tree to get an integer feasible solution. This is
called the depth first search strategy. Once, an integer solution is
found, one can switch to the best node first strategy.

27/41

Branch and Bound

How to choose a variable to branch on when multiple
variables are fractional? A popular option is to choose the most
fractional variable, i.e., the variable closest to 0.5. Suppose F is the
set of fractional variables, then choose

jE€arg max min {XJ-LP — L)<jLPJ, 1— ijP + p(J.LPJ}

Is there a way to solve the LPs faster? Use Dual Simplex when
descending from a parent to a child since the new constraint will
not violate reduced cost optimality conditions. Otherwise, store the
basis of the parent and use it as a starting point. Exploit simplex
with bounds instead of adding the variables as constraints.

28/41

Branch and Bound

How can we reduced the number of nodes explored?The
number of nodes explored can grow very quickly and increase
memory usage. Hence, one can delete all active nodes that are not
promising as soon as the upper bounds change using the LP
relaxation solution of their parent. (How?)

Other options include:

Generalized upper bound (GUB) or special order sets (SOS)
Strong branching

Adding cuts

Branching strategies that make the tree balanced (e.g.,
imagine two-way and multi-way branching of TSP)

29/41

Branch and Bound

Consider the constraints of the following form which we saw in the last
k
lecture >, x; = 1.

When we branch on a single fractional variable, one side of the tree where
x; = 1 has only one node, but the other child has k — 1 nodes and hence
the tree becomes unbalanced.

3 x=0 To avoid this issue, we split the feasible re-
JEQC gion using constraints of the form ZjeQ Xj =
0 as shown in the figure.

ij:

JEQ

We find an index r such that r = min{t: 3°;_; x!P > 1/2}. The two
child nodes are created by setting @ = {1,...,r}.

30/41

Branch and Bound

Apply GUB branching on the following problem after branching on x;3 at
the root.

max 50x; + 47x> + 44x3 + 41x4 + 38x5 + 36x5 + 31x7 + 29xg

+ 27x9 + 25x10 + 23x11 + 21x15 + 20x33
13

st > (21— j)x <22
j=1
12
> %=1
j=1
x€{0,1}Vj=1,...,13

Can you visualize how the feasible region is being split to generate the
child nodes?

31/41

Branch and Bound

In the strong branching strategy, CPLEX explores the up and down branches
to either optimality or for a certain number of levels and updates the

bounds.

Restricting the variables to a lower and higher values are also called down
and up branches, respectively.

The direction which is most promising is chosen as the branching variable
at the parent node.

32/41

Branch and Bound

Check out the details that CPLEX prints for different nodes of the branch
and bound tree. Note that integer solution is labeled ‘cutoff’ in CPLEX
node log.

Presolve

Branching directions
Multiple solutions
Number of nodes explored
Node selection

Variable selection

33/41

https://www.ibm.com/docs/en/icos/20.1.0?topic=mip-progress-reports-interpreting-node-log
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-node-presolve-switch
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-branching-direction
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-integer-solution-limit
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-node-limit
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-node-selection-strategy
https://www.ibm.com/docs/en/icos/12.9.0?topic=parameters-mip-variable-selection-strategy

Lecture Qutline

Preprocessing

34/41

Preprocessing

Before running a branch and bound algorithm, most solvers have a prepro-
cessing stage that may perform one or more of the following operations:

Tighten bounds
Remove redundant constraints

Fix variables

These steps can reduce the number of variables and constraints as well as
help solve the LP relaxations faster.

35/41

Preprocessing

Consider the inequality Y7 ; ajx; < b, where [; < x; < u; for all j =
1 n.

PR

Can you improve the upper bound on x; if a; > 07

. 1
x1 < min Ul’al<b Z ajli — Z aj“j>

Jj:aj>0 J:aj<0

Can you improve the lower bound on x; if a3 < 07

1
X1 > max /1,al<b— Z aj/j— Z ajuj>

Jj:a;>0 J:a;<0

Can you do better? You can update them using the new bounds and round
up the new lower bounds and round down the upper bounds if they are
fractional, i.e., [i] < x; < |u;]

36/41

Preprocessing

When is a constraint ZJ'-’ZI ajx; < b,where [; <x; <wujforallj=1,...,n
redundant? Check if

Z aju;j + Z ajl; <b

Jj:a;>0 Jj:a;<0

Likewise the problem is infeasible if

Z aj/jJr Z ajuj>b

J:a;>0 J:a;<0

37/41

Preprocessing

Consider an optimization problem of the form minc'x, s.t., Ax > b and
let xj € [/, u]Vj=1,...,n.

Can you fix the value of a variable x; if a; > 0Vi=1,...,m and
¢ < 07 Set x; = uj.
Can you fix the value of a variable x; if a; <0Vi=1,...,m and

¢ > 07 Set x; = I;.

Prove the above results using a duality argument.

38/41

Preprocessing

Recall that the LP relaxation after simplex terminates can be written as

LP _ . Tp-1p o &T =T
z7 =cgB b + Ty xn, + Ty xp,

Suppose zyg is an primal/upper bound of the integer program. We can
update the upper bound of a non-basic variable j that is currently at its
lower bound (if ¢; # 0) as follows

LP
. Zyp — Z
)(j S m {uj7 \‘UB_J}
G

Increasing x; will increase the objective
4LP Zyp

v

A

*

Likewise, for a non-basic variable at its upper bound, the lower bound can
LP
be adjusted to max{lh [Zeﬂ”

J
39/41

Preprocessing

Apply the above preprocessing rules on the following LP.

min —2x; — Xo + X3

s.t. bxy —2x + 8x3 < 15
8x1+3x% —x3>9
X1+x+x3<6
0<x <3
0<x <1
1<x3

40/41

Your Moment of Zen

MAN, YOURE BEING INOONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FRoM ONE, S0ME. FRom ZERD.
DIFFERENT TASks CAWL FOR
DIFFERENT CONVENTIONS. TO
GUOTE STANFBRD ALGUR THMS
EERT DONAD KNUTH,

“WHD ARe You? How DID_
YOU GET IN MY HOUSE?
/

VAT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

Source: xked

41/41

