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Previously on Transportation Logistics

Expanding the constraints we can write BxB + NxN = b. Hence, xB =
B−1b−B−1NxN . Writing the objective function in terms of the non-basic
variables

z = cTBxB + cTNxN

= cTB(B−1b− B−1NxN) + cTNxN

= cTBB−1b + (cTN − cTBB−1N)xN

Theorem

Suppose x∗ is a basic feasible solution and cT − cTBB−1A ≥ 0T, then x∗

is optimal
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Previously on Transportation Logistics

Can you compute cTd when we move in the direction that increases the
non-basic variable xj?

d =

[
dB

dN

]
=

[
dB

ej

]

cTd =
[
cTB cTN

] [dB

ej

]
= cTBdB + cTNej = cTBdB + cj

Recall, that the reduced cost of non-basic variable xj is cj −cTBB−1A·j and
if we are not at an optimal solution, we may find a j such that c̄j < 0*

Hence, we pick a direction vector

d =

[
dB

dN

]
=

[
−B−1A·j

ej

]
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Previously on Transportation Logistics

We have a basic feasible solution/corner point and a direction. The im-
mediate question is how far should we move along this direction.

Too small a step size and we will be close to where we started. Too big
and we may overshoot the feasible region. We want the right step size to
help us land at the extreme point.

Let’s find the largest step size which will keep the new point x̂ feasible.
Hence, the following conditions must be true

A(x + ηd) = b (Condition 1)

x + ηd ≥ 0 (Condition 2)
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Previously on Transportation Logistics

1 Start with an initial basic feasible solution x =

[
xB
xN

]
=

[
B−1b

0

]
2 Compute the reduced cost vector c̄TN = cTN − cTBB−1N

3 If c̄N ≥ 0, then x is optimal and terminate, else go to Step 4

4 Pick j∗ : c̄j∗ < 0 and compute descent direction d =

[
−B−1A·j∗

ej∗

]
5 If dB ≥ 0, then the LP is unbounded, else go to Step 6

6 Set k∗ ∈ arg min
{
− (xB )k

(dB )k
: (dB)k < 0

}
7 Modify the basis by swapping B·k∗ and A·j∗ , set xB = B−1b, and

go to Step 2.
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Lecture Outline

1 Simplex with Bounds

2 Duality

3 Sensitivity Analysis

4 CPLEX
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Lecture Outline

Simplex with Bounds
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Simplex with Bounds
Introduction

Consider the linear program with upper and lower bounds

min cTx

s.t. Ax = b

` ≤ x ≤ u

The bounds can be treated as regular constraints and slack and surplus
variables can be added. What is the size of the number of constraints and
variables? m + 2n constraints and 3n variables.

How does the feasible region for this problem look like? Can basic solutions
and basic feasible solutions be derived from columns of A? Are basic
feasible solutions extreme points?
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Simplex with Bounds
Introduction

Sketch the feasible region and find all basic feasible solutions to the fol-
lowing system of inequalities.

x1 + x2 ≤ 5

− x1 + 2x2 ≤ 4

0 ≤ x1 ≤ 4

− 1 ≤ x2 ≤ 4

I Add slacks to the first two inequalities.

I Select two basic columns and write them in terms of the non-basic
variables.

I Fix the non-basic variables at their upper and lower bounds to get
basic feasible solutions.
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Simplex with Bounds
Optimality Conditions

Consider the following expanded version of the LP

min cTBxB + cTNl
xNl

+ +cTNu
xNu

s.t.
[
B Nl Nu

]  xB
xNl

xNu

 = b

`B ≤ xB ≤ uB

`Nl
≤ xNl

≤ uNl

`Nu ≤ xNu ≤ uNu

Just as before, we solve for xB by setting xNl
= `Nl

and xNu = uNu to get

xB = B−1b− B−1Nl`Nl
− B−1NuuNu

This represents a basic solution. If it is also feasible, that is if `B ≤ xB ≤
uB , then it is a basic feasible solution.
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Simplex with Bounds
Optimality Conditions

Given xB = B−1b−B−1NlxNl
−B−1NuxNu , the objective can be written

as

z = cTB(B−1b− B−1NlxNl
− B−1NuxNu ) + cTNl

xNl
+ cTNu

xNu

= cTBB−1b + (cTNl
− cTBB−1Nl)xNl

+ (cTNu
− cTBB−1Nu)xNu

If cTNl
− cBB−1Nl ≥ 0T, increasing the xNl

values which are at their lower
bounds will only increase the objective.

If cTNu
− cBB−1Nu ≤ 0, decreasing xNu will again increase the objective.

Theorem

Suppose x∗ is a basic feasible solution and cTNl
− cBB−1Nl ≥ 0T and

cTNu
− cBB−1Nu ≤ 0T, then x∗ is optimal

What if the optimality conditions are violated for multiple non-basic vari-
ables? Which variable do you choose?
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Simplex with Bounds
Search Directions

If the optimality conditions are violated, then we can find a search direction
d that improves the objective. Suppose there is a variable j at its lower
bound for which cj − cBB−1A.j < 0. Then, the following vector is a
descent direction. (Why?)

d =

−B−1A.j

ej

0


Likewise, if a non-basic variable is at its upper bound, then it is easy to
show that the descent direction takes the form

d =

B−1A.j

0
−ej
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Simplex with Bounds
Step Size

The step sizes can be computed just as before by trying to maintain fea-
sibility. Suppose the entering variable was at its lower bound.

Condition 1: A(x + ηd) = b. This is automatically satisfied because

[
B Nl Nu

] xB − ηB−1A.j

`Nl
+ ηej

uNu + η0

 = b− ηBB−1A.j + ηNlej

= b

Condition 2: Three subcases are possible `B
`Nl

`Nu

 ≤
 xB
`Nl

uNu

+ η

dB

ej

0

 ≤
uB

uNl

uNu
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Simplex with Bounds
Step Size

Condition 2(a): `B ≤ xB + ηdB

Writing it component wise, η(dB)k ≥ −(xB − `B)k . If (dB)k ≥ 0, this
inequality is true for all η. Else, we need

η ≤ − (xB − `B)k
(dB)k

Hence, we set

η = min

{
− (xB − `B)k

(dB)k
: (dB)k < 0

}
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Simplex with Bounds
Step Size

Condition 2(b): xB + ηdB ≤ uB

If (dB)k ≤ 0, the above inequality is automatically satisfied. If (dB)k > 0,
η(dB)k ≤ (uB − xB)k , implies

η ≤ (uB − xB)k
(dB)k

Hence, we set

η = min

{
(uB − xB)k

(dB)k
: (dB)k > 0

}
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Simplex with Bounds
Step Size

Condition 2(c): `Nl
+ ηej ≤ uNl

. This implies that η ≤ uj − lj .

Combining all three conditions, the step-size allowed or the min-ratio test
can be summarized as

η = min


min

{
− (xB−`B )k

(dB )k
: (dB)k < 0

}
min

{
(uB−xB )k

(dB )k
: (dB)k > 0

}
uj − lj

A similar exercise can be followed for reducing a non-basic variable at its
upper bound.
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Lecture Outline

Duality
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Duality
Diet Problem Revisited

Consider the problem of optimizing nutritional requirements from various
food types. Find the quantity of each food type to purchase to meet the
minimum daily requirements (MDR) from different quantities of food while
minimizing the total cost.

Carbohydrates Protein Calcium Iron Unit Price

Milk 6.1 310 10.5 18 11
Wheat 44.7 1411 2 365 36

Rice 21.2 460 0.6 41 7.5
Sugar 34.9 0 0 0 51.7

Potatoes 14.3 336 1.8 118 34
Spinach 1.1 106 0 138 8.1

MDR 3000 70 0.8 12
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Duality
Diet Problem Revisited

Let xj be the amount of food type to purchase. The optimization problem
for minimizing the cost while meeting MDR can be written as

min 11x1 + 36x2 + 7.5x3 + 51.7x4 + 34x5 + 8.1x6

s.t. 6.1x1 + 44.7x2 + 21.2x3 + 34.9x4 + 14.3x5 + 1.1x6 ≥ 3000

310x1 + 1411x2 + 460x3 + 0x4 + 336x5 + 106x6 ≥ 70

10.5x1 + 2x2 + 0.6x3 + 0x4 + 1.8x5 + 0x6 ≥ 0.8

18x1 + 365x2 + 41x3 + 0x4 + 118x5 + 138x6 ≥ 12

x1, x2, x3, x4, x5, x6 ≥ 0

Imagine that Elon Musk that has synthesized these nutrients in the lab and
is planning to sell them as tablets that provide 1 unit of carbohydrates,
protein, etc. How should he set their prices of each tablet?
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Duality
Diet Problem Revisited

Let y1, y2, y3, and y4 be the cost of each tablet. Elon would obviously like
to maximize his revenue from the sales. Hence, an ideal objective would
be

max 3000y1 + 70y2 + 0.8y3 + 12y4

Note that this model doesn’t require a minimum of 3000 units of Carbo-
hydrates because that it is not a constraint for his company. His decision
variable is the price and we will assume that he is capable of meeting
demand for his tablets.

The prices must be fair and competitive to what is available out there.
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Duality
Diet Problem Revisited

The new prices must be cheaper in terms of the benefits for each of the
food types. For instance, to produce the benefits from 1 unit of Milk, we
would need to spend 6.1y1 + 310y2 + 10.5y3 + 18y4 on the tablets. Hence,

6.1y1 + 310y2 + 10.5y3 + 18y4 ≤ 11

Thus, we can write a new optimization problem for the tablet manufacturer
as

max 3000y1 + 70y2 + 0.8y3 + 12y4

s.t. 6.1y1 + 310y2 + 10.5y3 + 18y4 ≤ 11

44.7y1 + 1411y2 + 2y3 + 365y4 ≤ 36

21.2y1 + 460y2 + 0.6y3 + 41y4 ≤ 7.5

34.9y1 + 0y2 + 0y3 + 0y4 ≤ 51.7

14.3y1 + 336y2 + 1.8y3 + y4118 ≤ 134

1.1y1 + 106y2 + 0y3 + 138y4 ≤ 8.1

y1, y2, y3, y4 ≥ 0
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Duality
Primal and Dual Problems

Given a LP, a closely related formulation called the dual LP can be written
as follows:

Primal LP

min cTx

s.t. Ax ≥ b

x ≥ 0

Dual LP

max bTy

s.t. ATy ≤ c

y ≥ 0

The dual has the following features:

I If the primal is a minimization problem, the dual has a maximization
objective. The dual of the dual is the primal.

I The dual has as many variables (constraints) as the constraints
(variables) of the primal

I The dual variables are also called shadow prices. The name comes
from economics where a new good may not have a market price and
the willingness to pay is treated as a shadow price.
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Duality
Primal and Dual Problems

What if the primal looks a bit different? Can you write the dual of the
following optimization problem:

min cTx

s.t. Ax = b

x ≥ 0

The dual of this problem is

max bTy

s.t. ATy ≤ c

If we had an equality constraint in the primal problem, the corresponding
dual variable will be unrestricted.

Lecture 2 Linear Programming – Part II



24/49

Duality
Quick Reference for Writing the Dual

min problem max problem
ith constraint ≥ ↔ ith variable ≥ 0
ith constraint ≤ ↔ ith variable ≤ 0
ith constraint = ↔ ith variable is unrestricted
jth variable ≥ 0 ↔ jth constraint ≤
jth variable ≤ 0 ↔ jth constraint ≥

jth variable is unrestricted ↔ jth constraint =

Use the above rules and write the dual of the following primal LP:

max 8x1 + 3x2 − 2x3

s.t. x1 − 6x2 + x3 ≥ 2

5x1 + 7x2 − 2x3 = −4

2x1 − 3x2 + 3x3 ≤ 3

x1 ≤ 0, x2 ≥ 0, x3 unrestricted
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Duality
Geometric Overview

Notice that the primal variables are in Rn while the duals are in Rm so
visualizing them in one place is difficult. However, consider a simple case
where n = 2,m = 4 and the primals and duals are of the form

Primal Problem

min cTx

s.t. Ax ≤ b

Dual Problem

max bTy

s.t. ATy = c

y ≥ 0

𝑨𝟏⋅

𝑃

𝑨𝟐⋅

𝑨𝟒⋅

𝑨𝟑⋅

𝒄

𝑨⋅𝟑
𝑇

𝑨⋅𝟐
𝑇
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Duality
Another Interpretation

Dual variables can also be interpreted in a third way. Consider the following
LP that was discussed earlier.

min −6x1 − 4x2

s.t. x1 + x2 +x3 = 6

2x1 + x2 + x4 = 9

2x1 + 3x2 +x5 = 16

x1 x2 x3 x4 x5 RHS

RC 0 0 2 2 0 30

x2 0 1 2 -1 0 3

x1 1 0 -1 1 0 3

x5 0 0 -4 1 1 1

What happens to the objective when we increase x3 and x4 by a small amount?
This is same as decreasing the RHS of active constraints (6 and 9).
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Duality
Another Interpretation

What are the reduced costs of the slack variables?

c̄3 = c3 − cTBB−1A·3 = −cTBB−1A·3

It can be shown that y∗
1 is equal to the negative of the reduced cost of the

slack variable associated with the first constraint, i.e.,

y∗
1 = −c̄3 = cTBB−1A·3

In general, if the optimal primal is non-degenerate, the optimal dual vari-
ables are also called marginal costs and are equal to the negative of the
reduced costs of the slack variables. In matrix notation,

y∗T = cTBB−1
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Duality
Weak and Strong Duality

Consider the following primal and dual problems:

Primal LP

min cTx

s.t. Ax ≥ b

x ≥ 0

Dual LP

max bTy

s.t. ATy ≤ c

y ≥ 0

Theorem (Weak Duality Theorem)

If x is feasible to the primal and y is feasible to the dual, then cTx ≥ bTy

Since Ax ≥ b and y ≥ 0,
yTAx ≥ bTy

Similarly, ATy ≤ c and x ≥ 0 implies,

xTATy ≤ cTx

Lecture 2 Linear Programming – Part II



29/49

Duality
Weak and Strong Duality

The weak duality theorem states that the primal and dual LPs approach
their optima from the right and left respectively, but can we have a gap?

Theorem (Strong Duality Theorem)

If the primal and dual problems are feasible, then there exists x∗ and y∗

such that cTx∗ = bTy∗

(Sketch.) The optimum duals are the negative of the reduced costs of the
slack variables. Hence, y∗T = cTBB−1 and xB = B−1b.

cTx∗ = cTBxB = cTBB−1b = y∗Tb

Thus, one can solve the primal or dual and get the same optimum objec-

tive!
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Duality
Weak and Strong Duality

Notice that in both theorems, we assumed feasible solutions to the primal
and dual problems. In general, we can have the following scenarios

Finite Optimum Unbounded Infeasible
Finite Optimum X × ×
Unbounded × × X
Infeasible × X X
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Duality
Complementary Slackness

Theorem

The pair (x∗, y∗) are optimal to the primal and dual LPs ⇔

y∗
i (Ai·x

∗ − bi ) = 0 ∀, i = 1, . . . ,m

(cj − y∗TA·j)x
∗
j = 0∀ j = 1, . . . , n

Suppose we have optimality of (x∗, y∗) pair. Then, according to strong
duality and weak duality

cTx∗ = y∗TAx∗ = bTy∗

Hence
∑m

i=1 y
∗
i (Ai·x∗− bi ) = 0 and

∑n
j=1(cj − y∗TA·j)x

∗
j = 0. Feasibility

implies the complementary slackness conditions.
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Duality
Complementary Slackness

Consider the following LP that was discussed earlier.

min −6x1 − 4x2

s.t. x1 + x2 +x3 = 6

2x1 + x2 + x4 = 9

2x1 + 3x2 +x5 = 16

x1 x2 x3 x4 x5 RHS

RC 0 0 2 2 0 30

x2 0 1 2 -1 0 3

x1 1 0 -1 1 0 3

x5 0 0 -4 1 1 1

Can you find the optimal dual solutions using the complementary slackness
conditions?
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Duality
Optimality Conditions

Recall that the dual variables/marginal costs satisfy the following equation

yT = cTBB−1

Let us take the primal problem in standard form.

Primal LP

min cTx

s.t. Ax = b

x ≥ 0

Dual LP

max bTy

s.t. ATy ≤ c

What does the reduced cost optimality condition look like in terms of
the dual variables? Having non-negative reduced costs is equivalent to
achieving dual feasibility!
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Duality
Optimality Conditions

The primal simplex method tries maintains primal feasibility and attempts
to achieve dual feasibility.

In the dual simplex method, we maintain dual feasibility and try to achieve
primal feasibility.

We start with an initial dual basic feasible solution yT = cTBB−1. This is
easy when c ≥ 0 and the primal constraints are of the form Ax ≥ b or
Ax ≤ b. Why?
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Duality
Example

Consider the following example for the purpose of illustration

min x1 + x2

s.t. x1 + 2x2 ≥ 2

x1 ≥ 1

x1, x2 ≥ 0

Using surplus variables, the standard form can be written as

min x1 + x2

s.t. x1 + 2x2 − x3 = 2

x1 − x4 = 1

x1, x2, x3, x4 ≥ 0

Lecture 2 Linear Programming – Part II



36/49

Duality
Rule One

Note that in the dual simplex we do not write the dual and create a simplex
tableau. We still work with the original problem.

The tableau is created as before and we begin by ensuring that the reduced
costs above the basic variables are zeros. However, the basic variables need
not be feasible to the primal.

x1 x2 x3 x4 RHS

RC 1 1 0 0 0

x3 −1 −2 1 0 −2

x4 −1 0 0 1 −1

Identify a leaving variable (pivot row) using the most negative basic vari-
able. This helps move towards primal feasibility.
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Duality
Rule Two

Identify an entering variable using the min-ratio test. Select non-basic
columns in the pivot row. Identify the negative elements in the row and
divide the RC with the absolute values of the corresponding terms.

x1 x2 x3 x4 RHS

RC 1 1 0 0 0

x3 −1 −2 1 0 −2

x4 −1 0 0 1 −1

min-ratio 1 1/2 - -

The min-ratio rule ensures that the reduced costs remain non-negative,
thus dual feasibility is preserved. This identifies the pivot column and
pivot element.
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Duality
Rule Three

Carry out row operations to produce an identity matrix and zero reduced
costs under the new basis.

R1← R1/2

R0← R0− R1

x1 x2 x3 x4 RHS

RC 1/2 0 1/2 0 −1

x2 1/2 1 −1/2 0 1

x4 −1 0 0 1 −1

The min-ratio rule ensures that the reduced costs remain non-negative,
thus dual feasibility is preserved. This identifies the pivot column and
pivot element.
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Duality
Iteration 2

x1 x2 x3 x4 RHS

RC 0 0 1/2 1/2 −3/2

x2 0 1 −1/2 1/2 1/2

x1 1 0 0 −1 1

𝐴

𝐵

𝐶
𝐴

𝐵

𝐶

(0,1) (1,0.5)

(2,0)

(0.5,0.5)

(0.5,0)
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Lecture Outline

Sensitivity Analysis
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Sensitivity Analysis
Introduction

The parameters in an LP, i.e., A,b, and c are assumed to be given and
known.

But decision makers may want to know what happens if the input data
changes. Specifically, the following questions are relevant in this context.

1 If the problem data is different, is the current solution still optimum?

2 What is the range of values a variable can take for the current
solution be optimum?

3 If the current solution is not optimum, should we start simplex from
scratch or can we recycle?

For combinatorial optimiazation problems, two types of sensitivity studies
are important. What happens if a new constraint and new variable is
added.
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Sensitivity Analysis
Example

This study is also relevant when LPs serve as sub problems to other opti-
mization problems where it is solved repeatedly with different input data.

The above questions will be analyzed by changing one parameter at a time.
Imagine partial derivatives. If more than one variable changes, a similar
approach can be followed.

Consider the following example for motivating sensitivity analysis.

min −20x1 − 25x2 + 5x3 − 30x4

s.t. 3x1 + 3x2 + x3 + 3x4 ≤ 45

x1 + 2x2 − 3x3 + 3x4 ≤ 30

x ≥ 0

Suppose x3 and x4 are basic in the optimal solution. Can you find the
optimal x values and the objective. Also calculate the reduced costs and
the optimal dual solutions.

Lecture 2 Linear Programming – Part II



43/49

Sensitivity Analysis
Changes to the Cost Coefficients

What happens if the cost coefficient of the basic and non-basic
variables change?

If the basis is unchanged, change to the cost will not change xB = B−1b.
Thus, we just need to check if the reduced costs are greater than or equal
to zero.

I Find the range of values for which the cost coefficient of a non-basic
variable does not affect the basis.

I Find the range of values for which the cost coefficient of a basic
variable does not affect the basis.

If the cost coefficient changes to a value beyond these limits, should we
restart simplex?
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Sensitivity Analysis
Changes to the RHS

What happens when the b vector is modified?

Changes to the RHS does not affect reduced cost calculations but can
affect feasibility. Hence we just need to check if x = B−1b is still greater
than or equal to zero, i.e., it is basic feasible.

If B−1b is not basic feasible, do we have to restart simplex? Yes, if we
are using the primal simplex. However, it is easier to dual simplex in this
case since reduced costs are greater than or equal to zero at the current
solution.
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Sensitivity Analysis
Changes to the Constraint Matrix

What happens when a new constraint is added? If the current solution
satisfies the new constraint, it is optimal to the original problem.

Else, one could use dual simplex instead of restarting primal simplex. The
slack variable from the new constraint can be used as a new column in the
basis and hence the reduced costs remain non-negative.

What happens when a new variable is added? Say a new decision
variable x7 is introduced in the example problem with cost coefficient −20
and AT

.7 =
[
3 4

]
This variable can be assumed to be non-basic and the current solution is
basic feasible to the new problem. We hence need to check if the new
variable can enter the basis.
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Lecture Outline

CPLEX
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CPLEX
Tasks

CPLEX is a solver for linear and integer programs. See this link for the
documentation. Explore the following tasks with the diet problem.

1 Give names to variables and constraints which will make it easy to
debug your code. Check them using functions within
model.variables and model.constraints.

2 Solve the problem using the primal and dual simplex methods. Use
model.parameters to set the solution algorithm.

3 Construct the dual of the original problem and solve it using the
primal method.

4 Find the basis, basis inverse, slacks, reduced costs, sensitivity
ranges, and the indices of variables which belong to the basis after
solving the problem. Use functions in model.solution,
model.solution.advanced, and model.solution.sensitivity.

Lecture 2 Linear Programming – Part II

https://www.ibm.com/docs/en/icos/12.10.0?topic=cplex


48/49

CPLEX
Tasks

1 Export the problem to a .lp and a .sol file

2 Try solving the problem with a subset of the original constraints.
Resolve by adding the left out constraints using both primal and
dual simplex. Observe the difference in run times.

3 Run CPLEX by initializing a basic feasible solution that is different
from the default one created using the slack variables.

4 Print the iterations of simplex using SimplexCallback. See lpex4.py
for more details.
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Your Moment of Zen

Source: xkcd
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